In Fig. 6.43, if PQ ⊥ PS, PQ || SR, ∠ SQR = 28° and ∠ QRT = 65°, then find the valuesof x and y.
Answers
Answered by
8
Answer:
Given :-
• ∠ SQR = 28°
• ∠ QRT = 65°
To find
• Value of X and Y
Solution
∠ SQR + ∠ QRT = 180° [ Linear pair]
→ ∠ SQR + 65° = 180°
→ ∠ SQR = 180° - 65°
→ ∠SQR = 115°
∠SQR + ∠SRQ + ∠QSR = 180° [ Angle Sum Property of triangle ]
→ 28° + 115° + ∠QSR = 180°
→ ∠QSR + 143° = 180°
→ ∠QSR = 180° - 143°
→ ∠QSR = 37°
∠PSR = ∠QSR + ∠y
→ 90° = 37° + ∠y
→ ∠y = 90° - 37°
∠y = 53°
∠x + ∠y + ∠SPQ = 180° [ Angle sum property of triangle]
→ ∠x + 53° + 90° = 180°
→ ∠x + 143° = 180°
→ ∠x = 180° - 143°
→ ∠x = 37°
Therefore , X = 37° and Y = 53°
Similar questions
Computer Science,
4 months ago
Geography,
4 months ago
Physics,
4 months ago
Math,
9 months ago
Computer Science,
1 year ago