Math, asked by tanishyadavjnv, 2 months ago

In Fig-7.26,can you use ASA Congruence rule and conclude that ΔAOC≅ΔBOD?​

Attachments:

Answers

Answered by xoxo369ananya123
45

\huge\mathcal\colorbox{cyan}{{\color{white}{AŋʂᏯɛཞ♡࿐}}}

In tri. AOC and tri. BOD,

<ACO = <ODB = 70°

<CAO = < DBO =80°

AC = BD = 3 cm

So, tri.AOC is congruent to tri.BOD by ASA congruency rule.

{\huge{\overbrace{\underbrace{\orange{Fol.low\:\:Me}}}}}

Answered by C0TT0NCANDY
122

 \sf   \pmb{☞︎ln \: the \: two \: triangles \: AOC \: and \: BOD} \\  \sf \gray{ \angle \: C =  \angle \: D(each \: 70 \degree)}

 \sf \gray{  \angle \: AOC =  \angle \: BOD = 30 \degree(vertically \: opposite \: angles)}

 \sf \gray{ \angle \:A \: of  \: \triangle AOC \:  = 180 \degree - (70 \degree + 30 \degree) = 80 \degree}

  \large \frak  { \:  \:  \:  \:  \:  \:  \: (using \: angle \: sum \: property \: of \: a \: triangle.)}

 \sf \gray{ \angle \:B  \: of \: \triangle \:BOD  = 180 \degree - (70 \degree + 30 \degree) = 80 \degree)}

 \sf \gray{ \angle \: A \: and  \: \angle \: B \: } \\  \sf \gray{AC \:  = BD} \\  \sf \gray{ \angle \:C =  \angle \: D }

 \sf \gray{side \: AC \: is \: between \:  \angle \: A \: and  \: \angle \: C \: } \\  \sf \gray{side \: BD \: is \: between \:  \angle \: B \: and \: \angle \:D }

  \small\sf \pmb{so \: by \: } \huge \sf{asa}  \small\sf \pmb{congruence \: rule \:  \triangle \: AOC≅ \triangle \:BOD }

 \tt \orange{@C0TT0NCANDY}

Attachments:
Similar questions