Math, asked by poojabhobharia, 4 months ago

in fig 8.5, ∆ABC is isosceles with AB=AC. Find the values of x and y. ​

Attachments:

Answers

Answered by Anonymous
8

Given:-

  • ∆ABC is isosceles with AB = AC

To find:-

  • Values of x and y.

Solution:-

Finding ABC

\large{\tt{\longmapsto{\triangle ABC = (180° - 30°) \div 2}}}

\large{\tt{\longmapsto{150° \div 2}}}

\boxed{\large{\tt{\longmapsto{\red{\triangle ABC = 75°}}}}}

Finding X

\large{\tt{\longmapsto{}}}\large{\tt{\longmapsto{x = 180° - \triangle ABC}}}

\large{\tt{\longmapsto{x = 180° - 75°}}}

\boxed{\large{\tt{\longmapsto{\red{x = 105°}}}}}

Finding Y

\large{\tt{\longmapsto{y = 180° - \triangle ABC}}}

\large{\tt{\longmapsto{y = 180° - 75°}}}

\boxed{\large{\tt{\longmapsto{\red{y = 105°}}}}}

Hence,

  • Value of x = 105°
  • Value of y = 105°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Anonymous
10

Given:-

  • ∆ABC is isosceles with AB = AC

To find:-

  • Values of x and y.

Solution:-

★ Finding ∆ABC

\large{\tt{\longmapsto{\triangle ABC = (180° - 30°) \div 2}}}

\large{\tt{\longmapsto{150° \div 2}}}

\boxed{\large{\tt{\longmapsto{\red{\triangle ABC = 75°}}}}}

★ Finding X

\large{\tt{\longmapsto{}}}\large{\tt{\longmapsto{x = 180° - \triangle ABC}}}

\large{\tt{\longmapsto{x = 180° - 75°}}}

\boxed{\large{\tt{\longmapsto{\red{x = 105°}}}}}

★ Finding Y

\large{\tt{\longmapsto{y = 180° - \triangle ABC}}}

\large{\tt{\longmapsto{y = 180° - 75°}}}

\boxed{\large{\tt{\longmapsto{\red{y = 105°}}}}}

Hence,

Value of x = 105°

Value of y = 105°

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions