In Fig. 9.16, P is a point in the interior of a parallelogram ABCD. Show that
(i) ar(APB) + ar(PCD) = ½ ar(ABCD)
(ii) ar(APD) + ar(PBC) = ar(APB) + ar(PCD)
[Hint : Through P, draw a line parallel to AB.]
Answers
Given:
P is a point in the interior of a parallelogram ABCD
To show:
(i) ar(APB) + ar(PCD) = ½ ar(ABCD)
(ii) ar(APD) + ar(PBC) = ar(APB) + ar(PCD)
Construction:
Draw a line EF parallel to AB through the point P
Solution:
(i). ar(APB) + ar(PCD) = ½ ar(ABCD) :
We have,
EF // AB ..... [construction]
Also, AD // BC since ABCD is a parallelogram
∴ AE // BF
So, we can conclude
⇒ ABFE is a parallelogram ..... [since the opposite facing sides of a parallelogram are parallel to each other]
Similarly, we can also prove that ⇒ EFCD is a parallelogram
We know that → If a parallelogram and a triangle lie on the same base and between the same parallel lines then the area of the triangle is half the area of the parallelogram.
We have,
Δ APB and parallelogram ABFE on the same base AB and between same parallel lines AB & EF
∴ Ar(Δ APB) = ½Ar(//gm ABFE) .... (1)
and
Δ PCD and parallelogram EFCD on the same base CD and between same parallel lines CD & EF
∴ Ar(Δ PCD) = ½Ar(//gm EFCD) .... (2)
Now, on adding eq. (1) & (2), we have
Ar(Δ APB) + Ar(Δ PCD) = ½Ar(//gm ABFE) + ½Ar(//gm EFCD)
⇒ Ar(Δ APB) + Ar(Δ PCD) = ½[Ar(//gm ABFE) + Ar(//gm EFCD)]
⇒
Hence proved
(ii). ar(Δ APD) + ar(Δ PBC) = ar(Δ APB) + ar(Δ PCD):
L.H.S.
= Ar(Δ APD) + Ar(Δ PBC)
= Ar(//gm ABCD) - [Ar(Δ APB) + Ar(Δ PCD)]
= 2[Ar(Δ APB) + Ar(Δ PCD)] - [Ar(Δ APB) + Ar(Δ PCD)]
= Ar(Δ APB) + Ar(Δ PCD)
= R.H.S.
Thus,
Hence proved
-------------------------------------------------------------------------------
Also View:
ABCD is a parallelogram where AB || CD.E is a point on CD. if the area of ∆ A B E = 14.2 CM square, find the area of the parallelogram ABCD?
https://brainly.in/question/3328629
The area of a parallelogram abcd is 25cm^2 on the same base cd , triangle bcd is given such that area of triangle bcd = xcm^2 , then what is the value of x
https://brainly.in/question/9019246
parallelograms on the same base and between same parallel lines are equal in area
https://brainly.in/question/10257338