In fig. AB and CD intersect each other at O. If <AOC + <BOE = 70° and <BOD = 40° then the value of <BOE is
1. 150°
2. 30°
3. 120°
4. 90°
Answers
Answer:
∠BOE=30°
Step-by-step explanation:
From given figure
∠AOC=∠BOD [Vertically opposite angles]
⇒∠AOC=40 °
[∵∠BOD=40 °is given]
Now, ∠AOC+∠BOE=70 ° [Given]
⇒40° +∠BOE=70 °
⇒∠BOE=30°
∠AOE+∠BOE=180 °
[Linear pair of angles]
⇒∠AOE+30 °=180 °
⇒∠AOE=150 °
⇒∠AOC+∠COE=150 °
⇒40 °+∠COE=150 °
⇒∠COE=110 °
Question :-
In figure, lines AB and CD intersect at 0. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.
Answer :-
Since AB is a straight line,
∴ ∠AOC + ∠COE + ∠EOB = 180°
or (∠AOC + ∠BOE) + ∠COE = 180° or 70° + ∠COE = 180° [ ∵∠AOC + ∠BOE = 70° (Given)]
or ∠COE = 180° – 70° = 110°
∴ Reflex ∠COE = 360° – 110° = 250°
Also, AB and CD intersect at O.
∴∠COA = ∠BOD [Vertically opposite angles]
But ∠BOD = 40° [Given]
∴ ∠COA = 40°
Also, ∠AOC + ∠BOE = 70°
∴ 40° + ∠BOE = 70° or ∠BOE = 70° -40° = 30°
Thus, ∠BOE = 30° and reflex ∠COE = 250°.
Plz mrk as brainliest ❤
Hope it helpsss :)