in fig ab//cd if angle 2=(2x+30) , angle 4=(x+2y) and angle 6=(3y+10) find angle 5.
Answers
Answer:
@ñğłə×9103¥1£+992¥2£19×¥¥×■•[|♡~♡~[○[\♡~♡♡~[○[\♡\♡♡○♡●♡●♡●♡●♡●♡○}~9~92[3}3929~9[○}\♡\
w
w
e
rtie8w9wk9×9×9×
Step-by-step explanation:
Question:- In figure AB||CD if ∠2=(2x+30) ,∠4=(x+2y) and ∠6=(3y+10) find ∠5.
Solution:-
Given that AB∥CD
Now,
∠2 = ∠4 [Vert. opp. ∠s]
and ∠4 = ∠6 [Alternate int. ∠s]
=> ∠2 = ∠5 = ∠6
Now, ∠2 = ∠ 4
=> (2x + 30)° = (x + 2y)°
=> 2x-x-2y+30 = 0
=> x - 2y + 30 = 0 __________(1)
Also, ∠4 = ∠6
=> (x + 2y)° = (3y + 10)°
=> y - y - 10 = 0 _________(2)
Subtracting Eq.(1) from Eq.(2), we get
(x-2y+30)-(x-y-10) = 0
=> - y + 40 = 0 => y = 40
Substituting y = 40 in Eq.(2), we get
x - 40 - 10 = 0 => 50
∴ ∠4 = (x-2y)°= (50+2×40)°=130°
But, ∠4 + ∠5 = 180° [Co-interior ∠s]
=> 130° + ∠5 = 180°
=> ∠5 = 180° - 130°
= 50°
Answer:-
Hence, the measure of ∠5 is 50°.
:)