In Fig., AB || DC. Find the value of x.
For maths expert

Answers
Given: In quadrilateral ABCD , AB | | CD
AO = 3x - 19 , OC = x - 5 , BO = x - 3 , OD = 3
To Find out: Find the value of x .
Solution: AB | | CD ( Quadrilateral ABCD is a trapezium. )
Since, the diagonals of a trapezium divide each other proportionally.
Therefore,
AO/OC = BO/OD
⇒ 3x - 19 / x - 5 = x - 3 / 3
⇒ 3 ( 3x - 19 ) = ( x - 5 ) ( x - 3 )
⇒ 9x - 57 = x² - 8x + 15
⇒ x² - 17x + 72 = 0
⇒ x² - 9x - 8x + 72 = 0
⇒ x ( x - 9 ) - 8 ( x - 9 ) = 0
⇒ ( x - 8 ) ( x - 9 ) = 0
Thus, x = 8 units or x = 9 units
• In quadrilateral ABCD, AB//CD
AO = 3x - 19
OC = x - 5
BO = x - 3
OD = 3
• Find the value of x.
• AB//CD (Quadrilateral ABCD is a trapezium.)
AO/OC = BO/OD
(3x - 19)/x - 5) = (x - 3)/3
3(3x - 19) = (x - 5)(x - 3)
9x - 57 = x² - 8x + 15
x² - 9x - 8x + 72 = 0
x(x - 9) - 8(x - 9) = 0
(x - 8) (x - 9) = 0
x = 8, or 9.