Math, asked by Anonymous, 4 months ago

In Fig. find the values of rand v and then
show that AB || CD.
50°​

Attachments:

Answers

Answered by shaktisrivastava1234
11

 \huge \fbox{Correct Question:}

 \sf{In \:  fig. 6.28,find \:  the \:  values  \: of  \: x \:  and  \: y \:  and \:  then  \: show} \\  \sf{that \:  AB||CD.  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }

 \huge \fbox{Answer:}

 \large  \underline{ \underline{\frak{ \color{red}Given:}}}

 \mapsto \sf{ \angle A \cal x \cal l=50°}

 \mapsto \sf{ \angle C \cal y \cal l=130°}

 \large  \underline{ \underline{\frak{ \color{green}To \:  find:}}}

 \leadsto \sf{ \angle  \cal x}

 \leadsto \sf{ \angle \cal y}

 \large  \underline{ \underline{\frak{ \color{blue}Property  \: used:}}}

 {\rightarrow \sf{Vertically  \: opposite  \: angle  \: are  \: equal.}}

{ \rightarrow \sf{Alternate \:  interior \:  angles \:  are  \: equal. }}

 \large  \underline{ \underline{\frak{ \color{indigo}According \:  to  \: Question:}}}

: :  \implies \sf{ \angle C {\cal yl} =  \angle D {\cal yl}}

 : : \implies \sf{ \angle D {\cal yl} = 130°}

: :  \implies \sf{ \angle D {\cal yl} =  \angle A {\cal xl}}

: :  \implies \sf{  \angle A {\cal xl} = 130°}

{: :  \implies \sf{AB||CD \:because \: alternate  \: interior\: angle \: is \: equal.}}

Attachments:

shaktisrivastava1234: Hey user, I hope it can be fully helpful.If any doubt you can ask me anytime.
Anonymous: ok
Answered by nancy359
1

Step-by-step explanation:

Given:

The measurement of the angles are 50° and 130°

To find:

The value of the x and y

To prove:

AB ∥ CD

Solution:

From the figure:

x+50° = 180° [Linear pair]

x = 180°-50°

x = 130°

and

y = 130° [ vertically opposite angle]

The value of x and y is 130° and 130° respectively

As we have found the value of x and y and we can see that the value of x and y are equal to each other

and from the figure, we can see that the and x and y is the alternate interior angle for the lines AB and CD

So the lines AB and CD must be Parallel to each other

Hence Proved


Anonymous: hello
nancy359: hi
Similar questions