Math, asked by mars4, 1 year ago

in fig from an external point two tangents PT And PS are drawn to a circle with center O and radius r. if OP=2r, show that ang. OTS=Ang. OST=30degree.

Attachments:

Answers

Answered by Adithyalal1
2
GIVEN,
OP=2r
OS=OT=r
Ang OTP=Ang OSP=90 (tangents drawn from an external point to a circle is perpendicular to the radii)

TO PROVE
Ang OST=Ang OTS=30

PROOF
In Tri OTP
Ang OTP=90
sin Ang OPT= OT/OP
= r/2r
= 1/2
= sin 30
therefore Ang OPT =30
Ang TOP = 180 - (Ang OTP+Ang OPT)
= 180 - (90+30)
= 180 - 120
= 60
SIMILARLY, Ang SOP =60

Ang SOT = ( Ang SOP+ Ang TOP)
= ( 60+60)
= 120

In, tri OST
tri OST is an isosceles triangle since, OS=OT=r
Ang OTS= Ang OST (opposite sides of equal angles are equal) EQ(1)

therefore; Ang OTS+ Ang OST+ Ang SOT = 180
2 (Ang OTS)+120 = 180 FROM EQ (1)
2 (Ang OTS) = 60
Ang OTS = 60/2 = 30

Ang OST = Ang OTS = 30
HENCE PROVED
Attachments:
Similar questions