In fig. given Line AB and CD intersect at O. If ∠AOC + ∠BOE =70˚ and ∠BOD =40˚, Find ∠COE .*
70˚
80˚
100˚
110˚
Answers
Step-by-step explanation:
∠AOC + ∠BOE = 70°
∠AOC + ∠COE + ∠BOE = 180°
[ linear pair ]
So,
if ∠AOC + ∠BOE = 70°
so,
→ 70° + ∠COE = 180°
→ ∠COE = 180 - 70
→ ∠COE = 110°
.
∠BOD = ∠AOC [ Vertically Opposite Angles ]
.
Now,
→ ∠AOC + ∠COE + ∠BOE = 180°
→ 40° + 110° + ∠BOE = 180°
→ 150° + ∠BOE = 180°
→ ∠BOE = 180° - 150°
→ ∠BOE = 30°
.
∠BOD + ∠DOA = 180° [Liner Pair]
→ 40° + ∠DOA = 180°
→ ∠DOA = 180° - 40°
→ ∠DOA = 140°
Hence,
reflex angle ( ∠COE ) = ∠AOC + ∠DOE + ∠BOD + ∠BOE
reflex angle ( ∠COE ) = 40° + 140° + 40° + 30°
reflex angle ( ∠COE ) = 250°
Question :-
In figure, lines AB and CD intersect at 0. If ∠AOC + ∠BOE = 70° and ∠BOD = 40°, find ∠BOE and reflex ∠COE.
Answer :-
Since AB is a straight line,
∴ ∠AOC + ∠COE + ∠EOB = 180°
or (∠AOC + ∠BOE) + ∠COE = 180° or 70° + ∠COE = 180° [ ∵∠AOC + ∠BOE = 70° (Given)]
or ∠COE = 180° – 70° = 110°
∴ Reflex ∠COE = 360° – 110° = 250°
Also, AB and CD intersect at O.
∴∠COA = ∠BOD [Vertically opposite angles]
But ∠BOD = 40° [Given]
∴ ∠COA = 40°
Also, ∠AOC + ∠BOE = 70°
∴ 40° + ∠BOE = 70° or ∠BOE = 70° -40° = 30°
Thus, ∠BOE = 30° and reflex ∠COE = 250°.
Plz mrk as brainliest ❤