Math, asked by dishank384, 5 hours ago

In Fig., if ABC is an equilateral triangle, then shaded area is equal to___​

Attachments:

Answers

Answered by nilanjankhatua2
2

Step-by-step explanation:

We have given that ABC is an equilateral triangle. Area of the shaded region = area of the segment BC. Therefore, area of the shaded region is ( π 3 - 3 4 ) r 2

please mark me as brainleist

Answered by hotelcalifornia
0

Given:

ABC is an equilateral triangle

To find:

The area of the shaded region.

Step-by-step explanation:

Since ABC is an equilateral triangle ∠A = 60^\circ

We know that, \angle BCA\;=\;\frac12\angle BOC

60^\circ\;=\;\frac12\angle BOC

\angle BOC\;=\;120^\circ

Area of the shaded region = Area of the segment BC

Let us consider \angle BOC\;=\;\theta

Area of the segment = (\mathrm\pi\frac{\mathrm\theta}{360^\circ}\;-\;\sin\;\frac{\mathrm\theta}2\cos\;\frac{\mathrm\theta}2)r^2

On substituting the values,

∴ Area of the segment = (\frac{\pi\;\times\;120^\circ}{360^\circ}\;-\;\sin\;60.\cos\;60) \;r^{2}

(\frac{\mathrm\pi}3\;-\;\sin\;60\;.\;\cos\;60)\;r^2

Substitute sin\;60\;=\;\frac{\sqrt{3} }{2} and cos\;60\;=\;\frac{1}{2}

(\frac{\mathrm\pi}3\;-\;\frac{\sqrt3}2\;\times\;\frac12)\;r^2

(\frac{\mathrm\pi}3\;-\;\frac{\sqrt3}4)\;r^2

∴ Area of the shaded region = (\frac{\mathrm\pi}3\;-\;\frac{\sqrt3}4)\;r^2

Answer:

Hence, the area of the shaded region in the figure is (\frac{\mathrm\pi}3\;-\;\frac{\sqrt3}4)\;r^2

Similar questions