Math, asked by genius6130, 1 year ago

in fig if pq perpendicular to ps,pq parallel to sr, angle sqr=28 degree and angle qrt=65 degree, then find the values of x and y

Attachments:

Answers

Answered by choudharyvijaypesmtt
17
qrt = 65d
psr+qrt=180 (linear pair)
pqs+spq+psq= 180d (traingal-180d)
90d+x+y=180d
qrt = pqr (alternet internal)
x=65d - 28d = 37d
spq=90d, pqs=37d, psq=53 (traingal = 180d
Answered by Anonymous
32

Hello mate ☺

____________________________

Solution-

It is given that PQ∥SR. Therefore, ∠QRT=∠PQR              (Alternate Interior Angles)

⇒65°=x+28°

⇒x=65°−28°=37°

In ∆PQS, we have

x+y+∠SPQ=180°       (Sum of three angles of a triangle =180°)

⇒37°+y+90°=180°        ( It is given that ∠SPQ=90°)

⇒y=180°-37°−90°=53°

Therefore, x=37° and y=53°

I hope, this will help you.☺

Thank you______❤

_____________________________❤

Similar questions