In fig. QT perpendicular PR & Qs =ps. If
measure of angle TQR = 40° & RPS = 20, then
the value of x is...
Answers
Answer:
Step-by-step explanation:
n Δ QTR
∠ TQR + ∠ QRT + ∠ QTR = 180°
⇒ 40° + y + 90° = 180°
⇒ y = 180° - 130°
⇒ y = 50°
∠ QSP = ∠ SPR + ∠ SRP
Reason : Exterior angle = sum of interior angles
⇒ x = 30° + y
⇒ x = 30° + 50°
⇒ x = 80°
Answer:
X= 15°
Step-by-step explanation:
Given PS = QS
=> /_SPQ = x+40 .....(1) (Angles opposite to equal sides are equal)
Now QT is perpendicular to PR
This means Angle QTR=QTP = 90°
Therefore in Triangle QTR,
40°+90°+Angle TRQ = 180° (Angle sum property)
or Angle TRQ = 50°.....(2)
Therefore, by angle sum property in Triangle PSR, Angle PSR =110°
This implies Angle PSQ = 70° (linear pair)
Now, let's assume the point where QT and PS intersect be O.
Therefore, Angle POQ = 180°- (180°-70°-40°) (Linear Pair)
This implies Angle POQ = 110°.....(3)
Now, finally in Triangle PSQ
Angle SPQ = x+40 (from 1)
This implies x+40 = 180°-110°-x (Angle sum property in Triangle POQ)
or 2x = 30°
or x = 15°.