in fig. show that
(I)ab|| cd
ii) cd|| ef
iii) ab|| ef
Attachments:
Answers
Answered by
5
HEY !!
HERE IS YOUR ANSWER,
■■■■■■■■■■■■■■■■■
■ (a) to show = ab ll CD
ABC = 40
BCD = 20 + 20 = 40
There alternate interior angles are equal so ab ll CD.
■ (b) to show = CD ll ef
stretch the line CD .. let the angle formed is x.
x + 20 +20 = 180 ( linear pair )
x + 40 = 180
x = 180 - 40
x = 140
x + BCD = FEC ( ALTERNATEINTERIOR ANGLES )
140 + 20 = 160
160 = 160
Their alternate interior angles are equal so CD ll EF.
■ (c) to show = ab ll ef
stretch line EF angle formed on E named y .
A triangle formed ECG.
y + 160 = 180 ( linear pair )
y = 180 - 160
y = 20 ( GEC)
EGC + 20 + 20 = 180 ( angle sum property )
EGC + 40 = 180
EGC = 180 - 40
EGC = 140
EGC + BGE = 180 ( LINEAR PAIR )
140 + BGE = 180
BGE = 180 - 140
BGE = 40
Their consecutive angle are equal so ab ll ef.
✔ HENCE PROVED
■■■■■■■■■■■■■■■■■■■■■■■
HOPE IT HELPS U !!
☺☺
HERE IS YOUR ANSWER,
■■■■■■■■■■■■■■■■■
■ (a) to show = ab ll CD
ABC = 40
BCD = 20 + 20 = 40
There alternate interior angles are equal so ab ll CD.
■ (b) to show = CD ll ef
stretch the line CD .. let the angle formed is x.
x + 20 +20 = 180 ( linear pair )
x + 40 = 180
x = 180 - 40
x = 140
x + BCD = FEC ( ALTERNATEINTERIOR ANGLES )
140 + 20 = 160
160 = 160
Their alternate interior angles are equal so CD ll EF.
■ (c) to show = ab ll ef
stretch line EF angle formed on E named y .
A triangle formed ECG.
y + 160 = 180 ( linear pair )
y = 180 - 160
y = 20 ( GEC)
EGC + 20 + 20 = 180 ( angle sum property )
EGC + 40 = 180
EGC = 180 - 40
EGC = 140
EGC + BGE = 180 ( LINEAR PAIR )
140 + BGE = 180
BGE = 180 - 140
BGE = 40
Their consecutive angle are equal so ab ll ef.
✔ HENCE PROVED
■■■■■■■■■■■■■■■■■■■■■■■
HOPE IT HELPS U !!
☺☺
Attachments:
Similar questions