Math, asked by anisha12161, 8 months ago

In fig Side AB and AC of triangle ABC are produced to E and D respectively .If angle bisector BO and CO of angle CBE and angle BCD meet aech other at Point O , then prove that : angle BOC = 90 degree - angle x /2

Answers

Answered by vikram991
32

\huge{\bf{\underline{\underline{\purple{Solution :}}}}}

Given,

  • Bisectors BO and CO of ∠CBE and ∠BCD meet each other at point O.

To Proof :

  • \bold{\angle BOC = 90^{\circ} - \frac{\angle x}{2}}

Proof :

\implies \bold{\angle EBC + y = 180^{\circ}}

\implies \bold{\angle EBC = 180^{\circ} - \angle y}

\bold{\therefore \angle OBC = \frac{1}{2} \angle EBC}

⇒ ∠OBC = 1/2  (180° - ∠y)..............2) Equation

\implies \bold{\angle OCB + \angle z = 180^{\circ}}

\implies \bold{\angle DCB = 180^{\circ} - \angle z }

\implies \bold{\therefore \angle OCB = \frac{1}{2} \angle DCB }

⇒ ∠OCB = 1/2 ( 180° - ∠z)...........................2) Equation

\rule{200}2

\implies \bold{\angle BOC + \angle OBC + \angle OCB  = 180^{\circ}}

\implies \bold{\angle BOC + \frac{1}{2} (180^{\circ} - \angle y ) +\frac{1}{2} (180^{\circ} - \angle z) = 180^{\circ}}

\implies \bold{\angle BOC + \frac{1}{2} ( 180^{\circ} - \angle y + 180^{\circ} - \angle z ) = 180^{\circ}}

\implies \bold{2\angle BOC + 360^{\circ} - \angle y - \angle z = 360^{\circ}}

\implies \bold{2\angle BOC = \angle y + \angle z }

[ Sum of all angle of triangle = 180°

⇒∠x + ∠y +∠z = 180°

⇒∠y + ∠z = 180° - x ]

Now put value of ∠y + ∠z :

\implies \bold{\angle BOC = 180^{\circ} - \angle x}

\implies \bold{\angle BOC = \frac{180^{\circ} - \angle x }{2} }

\implies \boxed{\bold{\angle BOC = 90^{\circ} - \frac{\angle x}{2}}}

Hence Proved

\rule{200}2

Answered by Anonymous
44

\huge\mathbb {SOLUTION:-}

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

∠CBE = 180 - ∠ABC

∠CBO = \mathsf {\frac{1}{2} } ∠CBE

  • (BO is the bisector of ∠CBE)

∠CBO = \mathsf {\frac{1}{2} } ( 180 - ∠ABC) \mathsf {\frac{1}{2} } x 180 = 90

∠CBO = 90 - \mathsf {\frac{1}{2} } ∠ABC .............(1)

:\implies \mathsf {\frac{1}{2} } x ∠ABC = \mathsf {\frac{1}{2} } ∠ABC

:\implies ∠BCD = 180 - ∠ACD

:\implies ∠BCO = \mathsf {\frac{1}{2} } ∠BCD

  • ( CO is the bisector os ∠BCD)

:\implies ∠BCO = \mathsf {\frac{1}{2} } (180 - ∠ACD)

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

∠BCO = 90 - \mathsf {\frac{1}{2} } ∠ACD .............(2)

:\implies ∠BOC = 180 - (∠CBO + ∠BCO)

:\implies ∠BOC = 180 - (90 - \mathsf {\frac{1}{2} } ∠ABC + 90 - \mathsf {\frac{1}{2} } ∠ACD)

:\implies ∠BOC = 180 - 180 + \mathsf {\frac{1}{2} } ∠ABC + \mathsf {\frac{1}{2} } ∠ACD

:\implies ∠BOC = \mathsf {\frac{1}{2} } (∠ABC + ∠ACD)

:\implies ∠BOC = \mathsf {\frac{1}{2} } ( 180 - ∠BAC) (180 - ∠BAC = ∠ABC + ∠ACD)

:\implies ∠BOC = 90 - \mathsf {\frac{1}{2} } ∠BAC

Hence proved.........

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions