Math, asked by alphonsajimmy, 2 months ago

in fig the side QR of triangle PQR is produced to a point S .if the bisectors of angle PQR and angle PRS meet at point T then prove that angle QTR =1/2angle QPR.​

Answers

Answered by sharmakshitij376
1

Answer:

  1. Answer
  2. AnswerGiven, Bisectors of
  3. AnswerGiven, Bisectors of∠PQR
  4. AnswerGiven, Bisectors of∠PQRand
  5. AnswerGiven, Bisectors of∠PQRand∠PRS
  6. AnswerGiven, Bisectors of∠PQRand∠PRSmeet at point
  7. AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT
  8. AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.
  9. AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove:
  10. AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=
  11. AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=2
  12. AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=21
  13. AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=21∠QPR
  14. AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=21∠QPR.
  15. AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=21∠QPR.Proof,
  16. AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=21∠QPR.Proof,∠TRS=

∠TQR+

∠QTR

(Exterior angle of a triangle equals to the sum of the two interior angles.)

∠QTR=

∠TRS−

∠TQR

--- (i)

Also

∠SRP=

∠QPR+

∠PQR

2∠TRS= ∠QPR+ 2∠TQR

∠QPR=

2∠TRS−

2∠TQR

2

1

∠QPR=

∠TRS−

∠TQR

--- (ii)

Equating (i) and (ii),

∠QTR=

2

1

∠QPR

[henceproved

Similar questions