in fig the side QR of triangle PQR is produced to a point S .if the bisectors of angle PQR and angle PRS meet at point T then prove that angle QTR =1/2angle QPR.
Answers
Answered by
1
Answer:
- Answer
- AnswerGiven, Bisectors of
- AnswerGiven, Bisectors of∠PQR
- AnswerGiven, Bisectors of∠PQRand
- AnswerGiven, Bisectors of∠PQRand∠PRS
- AnswerGiven, Bisectors of∠PQRand∠PRSmeet at point
- AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT
- AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.
- AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove:
- AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=
- AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=2
- AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=21
- AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=21∠QPR
- AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=21∠QPR.
- AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=21∠QPR.Proof,
- AnswerGiven, Bisectors of∠PQRand∠PRSmeet at pointT.To prove: ∠QTR=21∠QPR.Proof,∠TRS=
∠TQR+
∠QTR
(Exterior angle of a triangle equals to the sum of the two interior angles.)
⇒
∠QTR=
∠TRS−
∠TQR
--- (i)
Also
∠SRP=
∠QPR+
∠PQR
2∠TRS= ∠QPR+ 2∠TQR
∠QPR=
2∠TRS−
2∠TQR
⇒
2
1
∠QPR=
∠TRS−
∠TQR
--- (ii)
Equating (i) and (ii),
∴
∠QTR=
2
1
∠QPR
[henceproved
Similar questions