In figure 11.21, one pair of adjacent sides of parallelogram is in the ratio 3 : 4. If one of its angles, ZA is a right angle and diagonal a 3x BD = 10 cm, find the- lengths of the sides of the parallelogram. А B (0) 4x (ii) perimeter of the parallelogram. Fig. 11.21
Answers
Answer:
Lengths of the sides of ABCD,
AB=DC=8cm
AD=BC=6cm
Perimeter of ABCD = 28cm.
Given:
ABCD is a parallelogram .
One pair of adjacent sides ABCD is in the ratio 3.
∠A=90°anddiagonal.
BD = 10cm.
Solution:
ABCD is a rectangle .
( One angle in a parallelogram is right angle )
i ) In angle A = 90degree In△DAB,∠A=90°
AD^{2} + AB^{2} = BD^{2}AD 2+AB 2 =BD 2.
By Phythagorean theorem,
(3x)^{2} + (4x)^{2} = 10^{2}⟹(3x)
2 +(4x) 2=10 2
9x^{2} + 16x^{2} = 10^{2}⟹9x
2 +16x 2 = 10 2
\implies 25x^{2} = 10^{2}⟹25x
2
=10
2
\implies x^{2} = \left(\frac{10}{5}\right)^{2}⟹x
2 = ( 5/10) 2
x = 5/10 = 2cm
ii) AD=BC=3x=3×2cm=6cm
iii) AB=DC=4x=4×2cm=8cm
= 2 (8cm+6cm)
= 2×14cm
= 28cm.
Therefore,
Lengths of the sides of ABCD,
AB=DC=8cm
AD=BC=6cm
Perimeter of ABCD = 28cm.
jrhdhrirhhrdz gr hai u udzezd re te r