In figure 3.9, measures of some angles are given. Using the measures find the values of x, y, z.
Attachments:
Answers
Answered by
53
Y=180-100=80
Z=180-140=40
X=180-(80+40)
X=180-120=60
I think this will help you
please mark me as a breanlist☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝
Z=180-140=40
X=180-(80+40)
X=180-120=60
I think this will help you
please mark me as a breanlist☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝☝
Answered by
133
Solution :
i ) y + 100° = 180° [ Linear pair ]
=> y = 180 - 100
=> y = 80°
ii ) z + 140° = 180° [ Linear pair ]
=> z = 180° - 140°
=> z = 40°
iii ) In ∆ENM ,
x + y + z = 180°
[ Angle sum property ]
=> x + 80° + 40° = 180°
=> x + 120° = 180°
=> x = 180° - 120°
=> x = 60°
Therefore ,
x = 60° , y = 80° , z = 40°
••••
i ) y + 100° = 180° [ Linear pair ]
=> y = 180 - 100
=> y = 80°
ii ) z + 140° = 180° [ Linear pair ]
=> z = 180° - 140°
=> z = 40°
iii ) In ∆ENM ,
x + y + z = 180°
[ Angle sum property ]
=> x + 80° + 40° = 180°
=> x + 120° = 180°
=> x = 180° - 120°
=> x = 60°
Therefore ,
x = 60° , y = 80° , z = 40°
••••
Similar questions