in figure 5 ABCD is a rectangle if angle CEB:angle ACB=3:2 find the measure of angle AEC and angle CEB
Attachments:
Answers
Answered by
73
Let ∠CEB = 3x; ∠ECB = 2x
In ΔCBE,
∠CEB + ∠ECB + ∠EBC = 180° [angle sum property]
⇒3x+2x+90° = 180°
⇒5x = 90°
⇒x = 18
So, ∠CEB = 3×18 = 54°; ∠ECB = 2×18 = 36°
Now, ∠ECD = 90° − ∠ECB = 90° − 36° = 54°
Now, ∠DCF + ∠ECD = 180° [Linear pair]
⇒∠DCF + 54° = 180°
⇒∠DCF = 180°−54° = 126°
In ΔCBE,
∠CEB + ∠ECB + ∠EBC = 180° [angle sum property]
⇒3x+2x+90° = 180°
⇒5x = 90°
⇒x = 18
So, ∠CEB = 3×18 = 54°; ∠ECB = 2×18 = 36°
Now, ∠ECD = 90° − ∠ECB = 90° − 36° = 54°
Now, ∠DCF + ∠ECD = 180° [Linear pair]
⇒∠DCF + 54° = 180°
⇒∠DCF = 180°−54° = 126°
amirbhat286gmailcom:
AEC kaha hai
Answered by
4
Answer:
Step-by-step explanation:
Let ∠CEB = 3x; ∠ECB = 2x
In ΔCBE,
∠CEB + ∠ECB + ∠EBC = 180° [angle sum property]
⇒3x+2x+90° = 180°
⇒5x = 90°
⇒x = 18
So, ∠CEB = 3×18 = 54°; ∠ECB = 2×18 = 36°
Now, ∠ECD = 90° − ∠ECB = 90° − 36° = 54°
Now, ∠DCF + ∠ECD = 180° [Linear pair]
⇒∠DCF + 54° = 180°
⇒∠DCF = 180°−54° = 126°
Similar questions