Math, asked by kh3428519, 5 days ago

In figure 5, sides QP and RQ of ∆PQR are produced to the points S and T respectively. If ∠SPR= 135 0 and ∠PQT = 110 0 , then find ∠PRQ.​

Answers

Answered by kamalhajare543
22

Answer:

Given :

  • ∠SPR = 135°
  • ∠PQT =110°

To Find :

  • ∠PRQ

Solution :

\longmapsto\tt{\angle{PQT}+\angle{PQR}=180\degree}

{\longmapsto\tt110\degree+\angle{PQR}=180\degree}

\longmapsto\tt{\angle{PQR}=180\degree-110\degree}

\longmapsto\tt\bold{\angle{PQR}=70\degree}

 \sf \: Now  \\ \longmapsto\tt{\angle{SPR}=\angle{PQR}+\angle{PRQ}(Exterior\:angle)}

\longmapsto\tt{135\degree=70\degree+\angle{PRQ}}

\longmapsto\tt{135\degree-70\degree=\angle{PRQ}}

\longmapsto\tt\bold{\angle{PRQ}=65\degree}:

 \sf \: So , \:  \:  \red{ \bold{∠PRQ = 65°..}}

Similar questions