In figure ab=ac,ch=cb and hk parallel bc if angle cax=137 then find angle chk
Answers
Answered by
234
Solution:-
∠ XAK + ∠ KAH = 180° (LP)
∠ KAH = 180°- 137° = 43°
AB = AC
∠ ABC = ∠ ACB = 137/2 = 68.5°
CH = CB
⇒ ∠ CBA = ∠CHB = 68.5°
∴ ∠ HCB =180°- 137° = 43°
∠ HCB = ∠ CHK = 43° (Alternative angles)
So, angle CHK = 43°
∠ XAK + ∠ KAH = 180° (LP)
∠ KAH = 180°- 137° = 43°
AB = AC
∠ ABC = ∠ ACB = 137/2 = 68.5°
CH = CB
⇒ ∠ CBA = ∠CHB = 68.5°
∴ ∠ HCB =180°- 137° = 43°
∠ HCB = ∠ CHK = 43° (Alternative angles)
So, angle CHK = 43°
Attachments:
Answered by
56
Angle XAC=137
So, Angle B + Angle C = 137 ( SUM of two opposite interior Angle)
And Angle A = Angle B (AB=AC)
Let angle A=B=X So,
X+X=137
2X=137
X=68.5
AngleA= AngleB =68.5
Angle B =Angle CHB (CH=CB) So ,
Angle CHB = 68.5 AND
In triangle HBC
ANGLE HBC= 68.5
ANGLE BHC= 68.5
ANGLE HCB= ? So ,
ANGLE HBC+ANGLE BHC+ANGLE HCB = 180°
68.5+68.5+ANGLE HCB = 180°
137+ANGLE HCB=180°
ANGLE HCB=180+137°
ANGLE HCB=43
ANGLE HCB=43=ANGLE CHK(alternative angle)
Similar questions