Math, asked by saumyasingh1569, 4 months ago

In figure, AB and DC of cyclic quadrilateral ABCD are produced to meet at E sides AD and BC are produced to meet at F If angle ADC = 80° and angle BAD = 50° then find angle BAD and angle CFD.​

Attachments:

Answers

Answered by samimronaldo
2

1.ADE+EAD+AED=180°

80°+EAD+ 50°=180

EAD=50°=BAD

2.D+B=180°

80+B=180°

ABC=100°

NOW, IN ∆ABF

A+B+F=180°

50°+100°+F=180°

F=30°=CFD

Answered by mathdude500
5

Answer:

\tt \:  \longrightarrow \:  \angle \: BAD = 50  \degree \: \\ \tt \:  \longrightarrow \:  \angle \: CFD = 30 \degree \:  \:

Step-by-step explanation:

Properties used :-

  • 1. Ange sum property of triangle states that the sum of interior angles of a triangle is 180°.

  • 2. The sum of the opposite angles of a cyclic quadrilateral is upplementary. 

Solution:-

☆ In triangle ️ AED

☆ Using angle sum property of triangle,

\tt \:  \longrightarrow \:  \angle \: AED + \angle \: EDA  + \angle \:EAD  = 180

\tt \:  \longrightarrow \: \angle \: EAD  + 50 + 80 = 180

\tt \:  \longrightarrow \: \angle \: EAD + 130 = 180

\tt \:  \longrightarrow \: \angle \: EAD = 180 - 130

\tt \:  \longrightarrow \: \angle \: EAD = 50

\bf\implies \: \boxed{\tt \:   \green{\angle \:BAD \:  =  \: 50}}

☆ In cyclic quadrilateral ABCD,

☆ Using sum of the opposite angles of cyclic quadrilateral is 180°.

\tt \:  \longrightarrow \: \angle \:ADC + \angle \:ABC = 180

\tt \:  \longrightarrow \: \angle \: ABC \:  + 80 = 180

\tt \:  \longrightarrow \: \angle \: ABC \: = 180 - 80

\tt \:  \longrightarrow \: \angle \: ABC \: = 100

☆ In triangle ️ ABF

☆ Using angle sum property of triangle,

\tt \:  \longrightarrow \: \angle \:FAB + \angle \:FBA +\angle \: AFB = 180

\tt \:  \longrightarrow \: \angle \:AFB + 50 + 100 = 180

\tt \:  \longrightarrow \: \angle \:AFB + 150 = 180

\tt \:  \longrightarrow \: \angle \:AFB = 180 - 150

\tt \:  \longrightarrow \: \angle \:AFB = 30

\bf\implies \: \boxed{ \red{\bf \:  \angle \:CFD \:  =  \: 30 \degree}}

Similar questions