In Figure AB||CD, EF||DQ. Determine the measures of Angle PDQ, Angle AED and Angle DEF.
Attachments:
Answers
Answered by
2
∴∠AED = ∠CDP
→ ∠AED = 34°
Ray EF stands on AB at E.
∴ ∠AEF + ∠FEB = 180°
→ ∠AED + ∠DEF + ∠FEB = 180°
-- 34° + ∠DEF + ∠FEB = 180°
-- 112° + ∠DEF = 180° - 112° = 68°
Now,EF || DQ || and transversal PE intersects DQ at D andEF at E.
∴∠PDQ = ∠DEF
∠PDQ = 68°
Answered by
3
Given : AB∣∣CD;EF∣∣DQ
To find : ∠PDQ
∵AB∣∣CD and PE is transversal
∠PDC and ∠PEA are corresponding angles.
∴PEA=34∘
∠PEA+∠PEF+∠FEB=180∘ (Linear pair)
34∘+∠PEF+∠FEB=180∘
∠PEF=180∘−34∘−78∘
∠PEF=68∘
∵EF∣∣DQ
∠PDQ=∠PEF=68∘
∴∠PDQ=68∘
Similar questions