In figure, AB || PQ, AB = PQ, AC || PR and AC = PR, prove that BC || QR and BC = QR.
Answers
Answer:
Given:
AB||PQ,AB = PQ,
- AC || PR and AC = PR,
To prove:
- BC||QR and BC=QR
Proof:
Since, in quadrilateral ABQP:-
AB||PQ and AB=PQ
=>Quadrilateral ABQP is parallelogram.
Therefore we can write:
AP||BQ and AP=BQ-------(i)
In quadrilateral APRC:-
AC||PR and AC=PR
=>Quadrilateral APRC is parallelogram.
Therefore we can write:
AP||CR and AP=CR-------(ii)
NOW,
From the equations i and ii, we get:
BQ||CR and BQ=CR
Hence proved!
Step-by-step explanation:
Let P and Q be the point of trisection of the line segment joining the points A (-5, 8) and B (10, −4).
So, AP = PQ = QB
We have AP : PB = 1 : 2 Co-ordinates of the point P are
\begin{gathered}\sf : \implies \bigg( \frac{1 \times 10 + 2 \times ( - 5) }{1 + 2} , \frac{1 \times ( - 4) + 2 \times 8}{1 + 2} \bigg) \\ \\ \sf : \implies \bigg( \frac{10 - 10 }{3} , \frac{16 - 4}{3} \bigg) \\ \\ \sf : \implies \bigg( \frac{0}{3} , \cancel{\frac{12}{3} } \bigg) \\ \\ \sf : \implies \bigg( 0, 4 \bigg)\end{gathered}
:⟹(
1+2
1×10+2×(−5)
,
1+2
1×(−4)+2×8
)
:⟹(
3
10−10
,
3
16−4
)
:⟹(
3
0
,
3
12
)
:⟹(0,4)
So point p lines on the y - axis
we have AQ : BQ = 2 : 1
Co-ordinates of the point Q are
\begin{gathered}\sf : \implies \bigg( \frac{2 \times 10 + 1 \times ( - 5) }{2 + 1} , \frac{2 \times ( - 4) + 2 \times 8}{2 + 1} \bigg) \\ \\ \sf : \implies \bigg( \frac{20 - 5 }{3} , \frac{ - 8 + 8}{3} \bigg) \\ \\ \sf : \implies \bigg( \cancel{ \frac{15}{3}} , \frac{ 0}{3} \bigg) \\ \\ \sf : \implies \bigg( 5, 0 \bigg) \\ \\\end{gathered}
:⟹(
2+1
2×10+1×(−5)
,
2+1
2×(−4)+2×8
)
:⟹(
3
20−5
,
3
−8+8
)
:⟹(
3
15
,
3
0
)
:⟹(5,0)