In figure ABC , B = 90°, BD AC, ifAB = 10 cm. BC = 20 cm. Find BD
Answers
Solution :
From attachment,
In ∆ABC, ∠B = 90°, AB = 10 cm, BC = 20 cm.
So using Pythagoras theorem,
→ AC² = AB² + BC²
→ AC² = 10² + 20²
→ AC² = 500
→ AC = √500
→ AC = √(5 × 100)
→ AC = 10√5 cm.
→ Area of ∆ABC = 1/2 × AB × BC
Now as BD ⊥ AC,
So, Area of ∆ABC = 1/2 × BD × AC
Therefore,
→ 1/2 × AB × BC = 1/2 × BD × AC
→ AB × BC = BD × AC
→ 10 × 20 = BD × 10√5
→ 200 = BD × 10√5
→ BD = 200/(10√5)
→ BD = 20/√5
→ BD = (20√5)/(√5)²
→ BD = 20√5/5
→ BD = 4√5 cm
Therefore,
Required answer : (2) 4√5 cm.
EXPLANATION.
In the figure ABC.
⇒ ∠B = 90°.
⇒ AB = 10 cm.
⇒ BC = 20 cm.
As we know that,
Pythagoras Theorem.
⇒ H² = P² + B².
Hypotenuse > Perpendicular > Base.
⇒ (AC)² = (AB)² + (BC)².
⇒ (AC)² = (10)² + (20)².
⇒ (AC)² = 100 + 400.
⇒ (AC)² = 500.
⇒ (AC) = 10√5 cm.
To find : BD.
Area of triangle = 1/2 x base x height.
⇒ 1/2 x BC x AB = 1/2 x AC x BD.
⇒ BC x AB = AC x BD.
⇒ 20 x 10 = 10√5 x BD.
⇒ 200 = 10√5 x BD.
⇒ 20 = √5 x BD.
⇒ 20/√5 = BD.
⇒ (20/√5) x (√5/√5) = BD.
⇒ (20√5)/(5) = BD.
⇒ 4√5 = BD.
∴ BD = 4√5 cm.
Option [2] is correct answer.