Math, asked by aaronchandyjacob, 9 months ago

In Figure below, show that (i) AB || CD (ii) EF || GH

Attachments:

Answers

Answered by sakshisingh27
10

Answer:

In the figure ,

∠ABC = 65°

∠BCD = 32° + 33° = 65°

∴ ∠ABC = ∠BCD [Alternate Interior angles ]

∴ AB || CD ................................ (1)

∠ CEF = 148°

∠ DCE = 32°

∠ CEF + ∠ DCE = 180°

148° + 32° = 180° [ Interior angles on the same side of the transversal ]

∴ CD || EF ........................................(2)

From (1) and (2) ,

AB || EF

Please mark as brainliest ...

Step-by-step explanation:

<b><body bgcolor=black><marquee scrollamount="3" direction="left"><font color=red></b>hope it will be helpful to you.✌

<b><body bgcolor=white><marquee scrollamount="3" direction="left"><font color=red></b>Thanks on my 15 answers to get inbox now ..✌

<b><body bgcolor=white><marquee scrollamount="3" direction="left"><font color=red></b>Be happy and healthy ..✌

<b><body bgcolor=black><marquee scrollamount="3" direction="left"><font color=red></b>follow me.✌

Answered by madeducators1
3

Given:

In fig, tree angles are provided.

To show:

(i) AB || CD (ii) EF || GH

Step-by-step explanation:

  • In the figure ,Firstly name the intersection part of two lines as P,Q,R,S.
  • Now,∠FRD=50°
  • Also ∠FRD+∠DRE=180°(L.P.A)

               ∠DRE=130°

  • Thus,∠APF=∠FRD=130°

            also∠APF=∠FRD=130°(Alternate angle)

                 Hence,AB || CD

  •   Now(ii)

          ∠GQB = 50°

           ∠FRD = 50°

 Thus∠GQB =∠FRD = 50° (Alternate angle)

      Hence,EF || GH

   

Similar questions