In figure (ii) given below, angle BAC = 90°, angle ADC = 90°, AD = 6 cm, CD = 8 cm and
BC = 26 cm. Find
(i) AC (ii) AB (iii) area of the shaded region.
Answers
Given:
∠BAC = 90°
∠ADC = 90°
AD = 6 cm
CD = 8 cm
BC = 26 cm
To find:
(i) AC
(ii) AB
(iii) Area of the shaded region
Solution:
Formulas to be used:
(i). Finding the length of AC:
In Δ ADC, using the Pythagoras theorem, we get
substituting the given values
Thus, .
(ii). Finding the length of AB:
In Δ ABC, using the Pythagoras theorem, we get
substituting the given values
Thus, .
(iii). Area of the shaded region:
The area of the shaded region is,
= [Area of Δ ABC] - [Area of Δ ADC]
=
substituting the values, we get
=
=
=
=
Thus,
----------------------------------------------------------------------------------
Also View:
Find the area of the shaded region .
https://brainly.in/question/20312768
Find the area of the shaded region.
https://brainly.in/question/16817639
Find the area of shaded region
https://brainly.in/question/19014954
Given:
∠BAC = 90°
∠ADC = 90°
AD = 6 cm
CD = 8 cm
BC = 26 cm
To find:
(i) AC
(ii) AB
(iii) Area of the shaded region
Solution:
Formulas to be used:
\begin{gathered}\boxed{\bold{Pythagoras\: theorem \rightarrow Hypotenuse^2 = Perpendicular^2 + Base^2}}\\\\\boxed{\bold{Area \:of\: a\: triangle =\frac{1}{2}\times base\times height }}\end{gathered}Pythagorastheorem→Hypotenuse2=Perpendicular2+Base2Areaofatriangle=21×base×height
(i). Finding the length of AC:
In Δ ADC, using the Pythagoras theorem, we get
AC^2 = AD^2 + CD^2AC2=AD2+CD2
substituting the given values
\implies AC^2 = 6^2 + 8^2⟹AC2=62+82
\implies AC = \sqrt{36 + 64}⟹AC=36+64
\implies AC = \sqrt{100}⟹AC=100
\implies AC = 10\:cm⟹AC=10cm
Thus, \boxed{\boxed{\bold{AC = 10\:cm}}}AC=10cm .
(ii). Finding the length of AB:
In Δ ABC, using the Pythagoras theorem, we get
BC^2 = AC^2 + AB^2BC2=AC2+AB2
substituting the given values
\implies 26^2 = 10^2 + AB^2⟹262=102+AB2
\implies AB^2 = 26^2 - 10^2⟹AB2=262−102
\implies AB = \sqrt{676 - 100}⟹AB=676−100
\implies AB = \sqrt{576}⟹AB=576
\implies AB = 24\:cm⟹AB=24cm
Thus, \boxed{\boxed{\bold{AB = 24\:cm}}}AB=24cm .
(iii). Area of the shaded region:
The area of the shaded region is,
= [Area of Δ ABC] - [Area of Δ ADC]
= [\frac{1}{2}\times AB\times AC ] - [\frac{1}{2}\times AD\times CD][21×AB×AC]−[21×AD×CD]
substituting the values, we get
= [\frac{1}{2}\times 24\times 10 ] - [\frac{1}{2}\times 6\times 8][21×24×10]−[21×6×8]
= [12\times 10 ] - [3\times 8][12×10]−[3×8]
= 120 - 24120−24
= 96\:cm^296cm2
Thus, \boxed{\boxed{\bold{Area\:of\:the\:shaded\:region = 96\:cm^2}}}Areaoftheshadedregion=96cm2