Math, asked by army94sam, 4 months ago

In figure l || m, angle OAC = 80°, angle ODB = 70°. IS ∆OCA ~ ∆ODB?​

Attachments:

Answers

Answered by Anonymous
8

 \huge {\purple{\tt{Answer:}}}

 \angle {\tt{D}} = \angle{\tt{C}} = \tt {70°} [{\tt{alternate ~ angles}}] \\\\\ \implies \angle {\tt{A}} = \angle{\tt{B}} = \tt {80°} [{\tt{alternate ~ angles}}]

In  \triangle ACO ,

 {\tt{\angle{A} + {\angle{C}}+ \angle{O}= 180°}} [{\tt{angle~sum~property}}] \\\\\ \implies \tt { 80° + 70° + {\angle{O}} = 180°} \\\\\ \implies \tt {{\angle{O}} = 180° - 150°} \\\\\ \implies {\tt {\angle{O}} = 30°} [{\tt{vertically ~opposite~angle}}]

Similar questions