In figure OP bisects angle BOC and OQ bisects angle AOC show that angle POQ = 90 degree
Answers
Answered by
316
Solution:-
Since OP bisects ∠ BOC.
∴ ∠ BOC = 2(∠ POC) ...(1)
Again, OQ bisects ∠ AOC.
∴ ∠ AOC = 2(∠ QOC) ... (2)
Since ray OC stands on line AB.
∴ ∠ AOC + ∠ BOC = 180°
⇒ 2(∠ QOC) + 2(∠ POC) = 180° [Using (1) and (2)]
⇒ 2(∠ POC + ∠ QOC) = 180°
⇒ ∠ POC + ∠ QOC = 90°
⇒ ∠ POQ = 90°
Hence ∠ POQ = 90° Proved.
Since OP bisects ∠ BOC.
∴ ∠ BOC = 2(∠ POC) ...(1)
Again, OQ bisects ∠ AOC.
∴ ∠ AOC = 2(∠ QOC) ... (2)
Since ray OC stands on line AB.
∴ ∠ AOC + ∠ BOC = 180°
⇒ 2(∠ QOC) + 2(∠ POC) = 180° [Using (1) and (2)]
⇒ 2(∠ POC + ∠ QOC) = 180°
⇒ ∠ POC + ∠ QOC = 90°
⇒ ∠ POQ = 90°
Hence ∠ POQ = 90° Proved.
Attachments:
Answered by
91
Ray OP bisects ∠ BOC
... ∠ COP = ∠ POB
... ∠ COP = 1/2 ∠ BOC ------------(1)
Ray OQ bisects ∠ AOC
... ∠ AOQ = ∠ QOC
∠ QOC = 1/2 ∠ AOC -----------(2)
Adding (1) and (2)
... ∠COP + ∠ QOC = 1/2 [ ∠BOC + ∠ AOC ] (∠AOC and ∠ BOC form a linear pair.)
= 1/2 x 180° (Linear Pair Axiom)
∠QOP = 90°
... ∠POQ is a right angle.
... ∠ COP = ∠ POB
... ∠ COP = 1/2 ∠ BOC ------------(1)
Ray OQ bisects ∠ AOC
... ∠ AOQ = ∠ QOC
∠ QOC = 1/2 ∠ AOC -----------(2)
Adding (1) and (2)
... ∠COP + ∠ QOC = 1/2 [ ∠BOC + ∠ AOC ] (∠AOC and ∠ BOC form a linear pair.)
= 1/2 x 180° (Linear Pair Axiom)
∠QOP = 90°
... ∠POQ is a right angle.
Similar questions