In figure OR perpendicular PQ
prove that: Angle ROS= ¹/2
( Angle QOS- Angle POS)
Answers
CORRECT QUESTION :
In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that :-
- ∠ROS = ½(∠QOS - ∠POS).
CORRECT SOLUTION :
Given : POQ is a straight line. Two rays OR & OS stands on the same line. Such that, OR ⊥ PQ & ∠ROQ = ∠ROP = 90°.
To Prove : ∠ROS = ½(∠QOS - ∠POS)
Proof : Since, POQ is a straight line.
The sum of all angles formed on the line PQ will be equals to 180°.
⇒ ∠POS + ∠ROS + ∠ROQ = 180°
⇒ ∠POS + ∠ROS + 90° = 180° (∠ROQ = 90°)
⇒ ∠POS + ∠ROS = 90°
⇒ ∠ROS = 90° - ∠POS _____ (Ⅰ)
∠ROS + ∠ROQ = ∠QOS (from the attached figure),
⇒ ∠ROS + 90° = ∠QOS
⇒ ∠ROS = ∠QOS - 90°_____ (Ⅱ)
Adding both the equations (Ⅰ) & (ⅠⅠ),
⇒ ∠ROS + ∠ROS = 90° - ∠POS + ∠QOS - 90°(90° common in L.H.S & R.H.S will be canceled & ∠ROS after adding will become 2∠ROS)
⇒ 2∠ROS = - ∠POS + ∠QOS
⇒ 2∠ROS = (∠QOS - ∠POS)
⇒ ∠ROS = ½(∠QOS - ∠POS)