Math, asked by ParthArora123, 2 months ago

In figure, PQ = PR, RS = RQ and ST || QR. if the exterior angle RPU is 140°, then find the measure of ∠TSR.
Pls tell I am so confused...

Attachments:

Answers

Answered by ItzBrainlyLords
5

☞︎︎︎ Solution :

\:

★ Consider the ΔPQR :

\:

  • From Exterior Angle Property -

\:

⇒ ∠RPU - ∠PRQ + ∠PQR

\:

  • Transposing The Terms

\:

⇒ ∠RPU = ∠PRQ + ∠PQR

\:

⇒ 140° = 2∠PQR (PQ = PR)

\:

 \large \rm⇒ \:  \angle PQR \:  =  \dfrac{140 \degree}{2}

\:

⇒ ∠PQR = 70°

\:

Given :

\:

  • ST || QR

  • QR is Transversal

\:

☞︎︎︎ Corresponding angles Property -

\:

⇒ ∠PST =∠PQR = 70°

\:

★ Consider triangle QSR :

\:

  • RS = RQ (from question)

\:

So,

\:

⇒ ∠SQR - ∠RSQ = 70°

\:

  • PQ is a straight line -

\:

⇒ ∠PST + ∠TSR + ∠RSQ = 180°

\:

⇒ 70° + ∠TSR + 70° = 180°

\:

⇒ 140° + ∠TSR = 180°

\:

⇒ ∠TSR = 180° – 140°

\:

∠TSR = 40

Answered by sandeepkaurbasati658
2

Answer:

hope

it

help

you

please

mark

me

as

brain

list

Attachments:
Similar questions