Math, asked by SahilBawne, 6 months ago

In figure segDE || side AB. DC=2BD,A(∆CDE)=20cm2.Find A(□ABDE).​

Attachments:

Answers

Answered by amitnrw
0

Given : DE ∥ AB

DC= 2BD

Ar(∆CDE)= 20cm²

To Find : Ar(□ABDE)​

Solution:

DE ∥ AB

=> ∠D = ∠B  and ∠E = ∠A   corresponding angles

ΔCDE ~ Δ CBA   using AA similarity

CD/CB = CD/(CD + BD)

= 2BD/(2BD + BD)

= 2BD/3BD

= 2/3

Ratio of area of similar triangles = ( ratio of corresponding sides)²

Area  of ΔCDE /Ar of  Δ CBA    =( CD/CB)²

Area  of ΔCDE /Ar of  Δ CBA    =( 2/3)²

Area  of ΔCDE /Ar of  Δ CBA    = 4/9

Ar(∆CDE)= 20 cm²

=> 20/ Ar of  Δ CBA    = 4/9

=> Ar of  Δ CBA = 45  cm²

Ar(□ABDE)​  =  Ar of  Δ CBA -  Ar(∆CDE)

= 45 - 20

= 25  

Hence Ar(□ABDE)​  is 25 cm²

Learn More:

R Prove that: (1)trapezium ABCD, AB is parallel to DC; Pand Q are ...

brainly.in/question/13354078

prove that the median of a trapezium is parallel to the parallel sides ...

brainly.in/question/6455343

Similar questions