Math, asked by kalpeshgogate, 11 months ago

in figure segment PQ is the diameter of semicircle P and Q the centre of p m q is equals to 10 cm and angle poq equal to 60 degree find the shaded portion​

Answers

Answered by vrcvsaidham
3

Answer:

wt is the shaded portion???

Answered by stefangonzalez246
4

The shaded portion is 30.25 cm^2.

Given

To find the shaded portion.

Radius ( r ) = 10 cm.

              \begin{equation}\theta\end = 60°

From the picture,

It consist of segment PMQ,

Area of segment PMQ = r^2 × [ (π \begin{equation}\theta\end / 360) - (sin \begin{equation}\theta\end / 2) ]

                      = 10^2 × [ (3.14 × 60°) - (sin 60° / 2) ]

                      = 100 × [ (0.52) - (0.43) ]

                      = 100 × [ 0.52 - 0.43 ]

                      = 100 × 0.09

                      = 9.

            Area of segment PMQ = 9 cm^2.

In ΔOPQ, segment OP ≅ segment OQ

                ∠OPQ = m∠OPQ = x

                m∠OPQ + m∠OQP + m∠POQ = 180°

                           x + x + 60° = 180°

                                         2x = 180° - 60°

                                         2x = 120°

                                           x = 60°

Hence,        m∠OPQ = m∠OQP = m∠POQ = 60°

                   ΔOPQ is an equilateral triangle

                   OP = OQ = PQ = 10 cm.

Area of Semi-circle = \frac{1}{2} × πr^2\\

Here, Diameter PQ = 10 cm.

          Radius ( r ) = 10 / 2 = 5 cm.

                         r = 5 cm  

Area of Semi-circle = \frac{1}{2} × πr^2\\

                                =  \frac{1}{2} × 3.14 × 5 × 5

                                = 39.25 cm^2\\.

                         Area of semi-circle = 39.25 cm^2.

Area of shaded portion = Area of semi-circle - Area of segment PMQ

                                       = 39.25 - 9        

                                       = 30.25 cm^2

Therefore, the shaded portion is 30.25 cm^2.

To learn more...      

brainly.in/question/7425626                    

Attachments:
Similar questions