In figure two lines AB and CD are intersected by a transversal L such that angle 1=50 degree and angle 2 =130 degree. Prove that AB and CD are parallel
Answers
Answer:
Solution:
∠ BMN = ∠ DNM = 180° (Consecutive interior angles of AB II CD) ... (1)
Now ray MP bisects ∠ BMN
∴ ∠ 1 = ∠ 2 = 1/2 of ∠ BMN ...(2)
Similarly ∠ 3 = ∠ 4 = 1/2 of ∠ DNM ...(3)
Adding equations (2) and (3), we get
∴ ∠ 1 + ∠ 3 = 1/2 ∠ BMN + 1/2 ∠ DNM
∴ ∠ 1 + ∠ 3 =1/2(∠ BMN + ∠ DNM)... (4)
From equations (1) and (4), we get
∴ ∠ 1 + ∠ 3 = 1/2 × 180° = 90°
Now in Δ PMN, we have
∴ ∠ 1 + ∠ 3 ∠ MPN = 180° ..... (Sum of the angles of Δ)
⇒ 90° + ∠ MPN = 180°
⇒ ∠ MPN = 180 - 90°
⇒ ∠ MPN = 90° Hence proved.
Answer:
the answer for your question is given in the image
hope this answer will help you
plzzzz mark me as brainliest plzzzzzzzzzzz plzzzz plzzzzzzzzzzz plzzzz plzzzzzzzzzzz plzzzz plzzzzzzzzzzz plzzzz plzzzzzzzzzzz plzzzz plzzzzzzzzzzz plzzzz plzzzzzzzzzzz plzzzz plzzzzzzzzzzz plzzzz plzzzzzzzzzzz plzzzz
Step-by-step explanation:
possible