in fogure of ab||cs and oa=3x-1,oc =5x-3,ob=2x+1,od=6x-5,find the value of x
Answers
Answer:
GIVEN:
OA= 3x-1 , OC= 5x-3, OD= 6x-5 , BO = 2x+1
AO/OC = BO/OD
[The diagonals of a Trapezium divide each other proportionally]
(3x-1)/(5x-3) =( 2x+1)/(6x-5)
(3x-1) (6x-5) = (5x-3) ( 2x+1)
3x(6x-5) -1 (6x-5) = 2x(5x-3)+1(5x-3)
18x² -15x -6x +5 = 10x² -6x +5x -3
18x² -21x +5 = 10x² - x -3
18x² -10x² -21x + x +5+3 =0
8x² - 20x +8= 0
4(2x² -5x +2) = 0
2x² -5x +2 = 0
2x² -4x -x +2= 0
[By factorization]
2x(x-2) -1(x-2)= 0
(2x-1) (x-2) = 0
(2x-1) = 0 or (x-2) = 0
x = ½ or x = 2
If we put x= ½ in OD , The value of OD is negative.
Hence, the value of is x = 2. please mark as brilliant
OA=3x−1OC=5x−3OB=2x+1OD=6x−5ThediagonalsoftrapeziumdivideeachotherproportionallyOCOA=ODOB⇒(5x−3)(3x−1)=(6x−5)(2x+1)⇒(3x−1)(6x−5)=(2x+1)(5x−3)⇒18x2−21x+5=10x2−x−3⇒8x2−20x+8=0⇒2x2−5x+2=0⇒(2x−1)(x−2)=0⇒x=21or2ifweputx=21inODthevalueofODisnegativeHence,x=2
hope it will be useful
please follow me and mark mi as brainleast