In given figure AB = AC and ACD = 120°, then find value of a
Answers
Answer:
BAC=60°
Step-by-step explanation:
Given:- AB=AC
C=120°
BCA+ACD=180 ………linear angles
BCA+120=180
BCA=180-120
BCA=60°
BCA=CBA ………angles of isosceles triangle
CBA=60
ABC+ACB+BAC=180………sum of angles of triangle
60+60+BAC=180
120+BAC=180
BAC=180-120
BAC=60°
Answer:
Question:
In fig.,AB=AC and ∠ACD=120°.Find ∠A.
Answer:
We have,
AB=AC
➙∠B=∠C. [∵Angles opposite to equal sides are equal]
Now,∠ACB+∠ACD=180°. [Angles of a linear pair]
➙ ∠C+120°=180°
➙ ∠C=60°
➙ ∠B=60°. [∵∠B=∠C]
Using angle sum property in ∆ABC,we obtain
∠A+∠B+∠C=180°
➙ ∠A+60°+60°=180°. [∠B=∠C=60°]
➙ ∠A=60°