In given figure AB ||DE LABC =75° and LCDE =145° then find = LBCD
Answers
Answer:
Extend the line AB to F
So, AF || DE
DC is traversal
∠EDC=∠BOD (Alternate interior angles)
∠EDC=∠BOD = 145°
∠BOD+∠BOC =180° (Linear pair)
145°+∠BOC =180°
∠BOC =180°-145°
∠BOC =35°
In BOC
∠BOC+∠BCO = ∠ABC (exterior angle property of triangle)
35°+∠BCO = 75°
∠BCO = 75°-35°
∠BCO =40°
So, ∠BCD =40°
![](https://hi-static.z-dn.net/files/db3/f21b92865d1df3b1b95ff01e56844ec9.png)
Step-by-step explanation:
Answer:
Answer:∠BCD =40°
Answer:∠BCD =40°Step-by-step explanation:
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figure
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to F
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DE
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)∠EDC=∠BOD = 145°
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)∠EDC=∠BOD = 145°∠BOD+∠BOC =180° (Linear pair)
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)∠EDC=∠BOD = 145°∠BOD+∠BOC =180° (Linear pair)145°+∠BOC =180°
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)∠EDC=∠BOD = 145°∠BOD+∠BOC =180° (Linear pair)145°+∠BOC =180°∠BOC =180°-145°
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)∠EDC=∠BOD = 145°∠BOD+∠BOC =180° (Linear pair)145°+∠BOC =180°∠BOC =180°-145°∠BOC =35°
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)∠EDC=∠BOD = 145°∠BOD+∠BOC =180° (Linear pair)145°+∠BOC =180°∠BOC =180°-145°∠BOC =35°In BOC
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)∠EDC=∠BOD = 145°∠BOD+∠BOC =180° (Linear pair)145°+∠BOC =180°∠BOC =180°-145°∠BOC =35°In BOC∠BOC+∠BCO = ∠ABC (exterior angle property of triangle)
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)∠EDC=∠BOD = 145°∠BOD+∠BOC =180° (Linear pair)145°+∠BOC =180°∠BOC =180°-145°∠BOC =35°In BOC∠BOC+∠BCO = ∠ABC (exterior angle property of triangle)35°+∠BCO = 75°
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)∠EDC=∠BOD = 145°∠BOD+∠BOC =180° (Linear pair)145°+∠BOC =180°∠BOC =180°-145°∠BOC =35°In BOC∠BOC+∠BCO = ∠ABC (exterior angle property of triangle)35°+∠BCO = 75°∠BCO = 75°-35°
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)∠EDC=∠BOD = 145°∠BOD+∠BOC =180° (Linear pair)145°+∠BOC =180°∠BOC =180°-145°∠BOC =35°In BOC∠BOC+∠BCO = ∠ABC (exterior angle property of triangle)35°+∠BCO = 75°∠BCO = 75°-35°∠BCO =40°
Answer:∠BCD =40°Step-by-step explanation:Refer the attached figureExtend the line AB to FSo, AF || DEDC is traversal∠EDC=∠BOD (Alternate interior angles)∠EDC=∠BOD = 145°∠BOD+∠BOC =180° (Linear pair)145°+∠BOC =180°∠BOC =180°-145°∠BOC =35°In BOC∠BOC+∠BCO = ∠ABC (exterior angle property of triangle)35°+∠BCO = 75°∠BCO = 75°-35°∠BCO =40°So, ∠BCD =40°
#Bebrainly