Math, asked by Divyaalia, 1 year ago

In given figure, Angle PQR = Angle PRQ, then prove that Angle PQS = Angle PRT.​

Attachments:

Answers

Answered by ITZWildBoy
28

\huge\underline\mathfrak\purple{Solution}

SQR \: is \: a \: straight \: line \\  \angle \: y \:  +  \angle \: z = 180......(1) \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (Linear \: pair) \\  \\ TRQ \: is \: a \: straight \: line  \\ \angle \: x \:  +  \angle \: z \:  = 180......(2) \:  \:  \:  \:  \:  \:  \:  \:  \: (Linear \: pair) \\  \\ so \: ..(1) =  \: ..(2) \\  \angle \: y \:  +  \angle \: z =  \angle \: x \:  +  \angle \: z \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \angle \: y \:  =  \angle \: z \\  Hence, \:  \angle \: PQR \:  =  \angle \: PRT \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Hence \: proved

HOPE it helps to you!!

Answered by Kaustav26
7

Step-by-step explanation:

As angle PQS = angle PRT

Let us consider angle PQS = angle PRT = x

Let angle QPR = y

We know that, the sum of two interior angle is equal to the opposite exterior angle.

From this, we can say that

Angle PRQ + Angle QPR = angle PQS

=> x+y = angle PQS ....(i)

angle PQR + angle QPR = Angle PRT

=> x+y = angle PRT ....(ii)

From (i) & (ii), we can conclude that

angle PQS = angle PRT

Similar questions