Math, asked by DarshanDooly, 10 months ago

in given figure CE and DE are equal chords of a circle with centr o if angle AOB=90 ind ar(triangle CED)ar(triangle AOB)​

Answers

Answered by SarcasticL0ve
6

\bold{\underline{\rm{\red{Given:-}}}}

  • CE AND DE are equal chords of a circle with center O.

  • If angle AOB= 90 FIND ar[triangle CED] : ar[triangle AOB]

\bold{\underline{\rm{\purple{Solution:-}}}}

\implies \; \sf{ \angle AOB} = 90°

★ CE and DE are equal chord.

We can take E = 90°

  • Diameter (CD) = 2r

★ Let CE = DE = x

 \implies \sf{x^2 + x^2 = 4r^2} \\ \\ \\ \implies \sf{2x^2 + = 4r^2} \\ \\ \\ \implies \sf{x^2 = 2r^2} \\ \\ \\ \implies \sf{x = \sqrt{2}}

\rule{200}{2}

\implies \sf{ Area_{ \triangle CED } = \dfrac{1}{2} \times x \times x} \\ \\ \\ \implies \sf{ Area_{ \triangle CED } = \dfrac{1}{2} \times \sqrt{2} r \times \sqrt{2} r} \\ \\ \\ \implies \sf{ Area_{ \triangle CED } = r^2}

\implies \sf{ Area_{ \triangle AOB } = \dfrac{1}{2} \times r \times r} \\ \\ \\ \implies \sf{ Area_{ \triangle AOB } = \dfrac{r^2}{r}}

\rule{200}{2}

Hence,

★The ratio of  \sf{ \triangle CED} and  \sf{ \triangle AOB}

 \sf{r^2 : \dfrac{r^2}{r}}

\bold{\underline{\underline{\boxed{\sf{\red{\dag \; 2 : 1}}}}}}

\rule{200}{2}

Attachments:

Anonymous: Awesome ♥️
Answered by Brainlyuse13346
1

This is the ANSWER for the question given above.

Attachments:
Similar questions