Math, asked by Harithari, 3 months ago

In given figure, o is the center of the circle. Find value of x

Attachments:

Answers

Answered by IIJustAWeebII
2

 \huge{ \star{ \mathfrak{ \underline{✤Soution}}}}

 \sf{In \: the \: given \: figure, }

 \sf{ \angle{CAD = x \: and{ \angle{BAD = 2x}}}}

 \sf{According \: to \: the \: circle \: concept}

 \sf{ \angle{CAD = { \angle{CBD}}}}

 \sf{so \: { \angle{CBD= x}}}

 \sf{also \: line \: BC \: contains \: central \: of \: circle}

 \sf{hence { \triangle{CBD \: is \: right \: angle \: triangle}}}

 \sf{hence { \angle{CDB= 90{ \degree}}}}

 \sf{ \blue{We \: know \: that \: sum \: of \: all \: angles \: of \: a \: triangle \: is \: 180{ \degree}}}

 \sf{Hence,{ \angle{BCD + { \angle{CBD + { \angle{CDB= 180{ \degree}}}}}}}}

 \sf{ =  > 2x + x + 90 = 180{ \degree}}

 \sf {=  > 3x = 180{ \degree{  - 90{ \degree}}}}

 \sf{ =  > x =  \frac{90}{3} { \degree}}

 \sf{ \green{hence \: x = 30{ \degree}}}

Hope this helps you mate ✌


Harithari: THX
IIJustAWeebII: Welcome!! (:
Similar questions