Math, asked by cool3928, 1 year ago

In how many different ways can 4 boys and 3 girls be arranged in a row such that all the boys stand together and all the girls stand together

Answers

Answered by VipinK12
9
two ways group of boys and girls can be arranged
BG, GB
but boy and girl group will be further arranged
as 4 boys 4! , 3 girls 3!
so total ways..
2! * 3! *4!
Answered by throwdolbeau
6

Answer:

Total number of ways such that 4 boys and 3 girls can be arranged in a row such that all the boys stand together and all the girls stand together = 288

Step-by-step explanation:

Let us assume that 4 boys together form group 1 and 3 girls together can form group 2

Now, number of ways these two groups can be arranged = 2! = 2

Number of ways in which group 1 can be arranged = 4!

                                                                                     = 4 × 3 × 2 × 1

                                                                                     = 24

Number of ways in which group 2 can be arranged = 3!

                                                                                      = 3 × 2 × 1

                                                                                      = 6

Therefore, Total number of ways such that 4 boys and 3 girls can be arranged in a row such that all the boys stand together and all the girls stand together = 2 × 24 × 6

                          = 288

Similar questions