Math, asked by mayankjain3780, 6 months ago

In how many e years 1000 rupees amount to do 1464 point 10 if the rate of the interest is 10% P.A compounded annually

Answers

Answered by InfiniteSoul
46

\sf{\bold{\green{\underline{\underline{Correct\: Question}}}}}

⠀⠀⠀⠀

  • In how many years 1000 rupees amount to Rs. 1464.10 if the rate of the interest is 10% P.A compounded annually

⠀⠀⠀⠀

______________________________

\sf{\bold{\green{\underline{\underline{Given}}}}}

⠀⠀⠀⠀

  • Amount = Rs. 1464.10
  • Principle = Rs. 1000
  • Rate = 10%

______________________

\sf{\bold{\green{\underline{\underline{To\:Find}}}}}

⠀⠀⠀⠀

  • Time = ??

______________________

\sf{\bold{\green{\underline{\underline{Solution}}}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{Amount = Principle \bigg\lgroup 1 + \dfrac{rate}{10}\bigg\rgroup^{time}}}}}

⠀⠀⠀⠀

\sf :\implies\: {\bold{ 1464.1 = 1000 \bigg\lgroup 1 + \dfrac{10}{100} \bigg\rgroup^{time} }}

⠀⠀⠀⠀

\sf :\implies\: {\bold{ 1464.1 = 1000 \bigg\lgroup 1 + \dfrac{1}{10} \bigg\rgroup^{time} }}

⠀⠀⠀⠀

\sf :\implies\: {\bold{ 1464.1 = 1000 \bigg\lgroup  \dfrac{10 + 1 }{10} \bigg\rgroup^{time} }}

⠀⠀⠀⠀

\sf :\implies\: {\bold{ 1464.1 = 1000 \bigg\lgroup  \dfrac{11}{10} \bigg\rgroup^{time} }}

⠀⠀⠀⠀

\sf :\implies\: {\bold{ \dfrac{1464.1}{1000}=  \bigg\lgroup  \dfrac{11}{10} \bigg\rgroup^{time} }}

\sf :\implies\: {\bold{ \dfrac{14641}{10000}=  \bigg\lgroup  \dfrac{11}{10} \bigg\rgroup^{time} }}

⠀⠀⠀⠀

\sf :\implies\: {\bold{ \dfrac{11\times 11\times 11 \times 11}{10\times 10\times 10 \times 10}=  \bigg\lgroup  \dfrac{11}{10} \bigg\rgroup^{time} }}

⠀⠀⠀⠀

\sf :\implies\: {\bold{ \bigg\lgroup \dfrac{11}{10}\bigg\rgroup ^4=  \bigg\lgroup  \dfrac{11}{10} \bigg\rgroup^{time} }}

⠀⠀⠀⠀

  • Acc. to the law of exponent same bases implies same power

⠀⠀⠀⠀

\sf :\implies\: {\bold{time = 4 years }}

______________________

\sf{\bold{\green{\underline{\underline{Answer}}}}}

⠀⠀⠀⠀

  • In 4 years Rs. 1000 will amount to Rs.1464.10 at 10% per annum
Answered by BrainlyHero420
109

Answer:

✯ Given :-

  • Principal (P) = Rs 1000
  • Amount (A) = Rs 1464.10
  • Rate of Interest (r%) = 10 %

To Find :-

  • How many years Rs 1000 amount will be Rs 1464.10 at 10 % per annum.

✯ Formula Used :-

\boxed{\bold{\large{✮\: P(1\: +\: \dfrac{r}{100})^{n}} = A}}

✯ Solution :-

Given :

  • P = Rs 1000
  • A = Rs 1464.10
  • r% = 10 %

According to the question by using the formula we get,

➨ 1000 ( 1 + \sf\dfrac{\cancel{10}}{\cancel{100}} )ⁿ = 1464.10

➨ ( 1 + \dfrac{1}{10} )ⁿ = \dfrac{146410}{1000 × 100}

➨ ( 1 + \dfrac{1}{10} )ⁿ = \dfrac{14641}{10000}

➨ ( \dfrac{11}{10} )ⁿ = ( \dfrac{11}{10} )⁴

➠ n = 4 years

\therefore In 4 years Rs 1000 amount will be Rs 1464.10 at the 10 % per annum.

_______________________________

Similar questions