Math, asked by shreyashkumbhar25, 4 months ago

In how many years a sum of Rs 30000 will amount to Rs. 45000 at the rate of 10% p.a simple interest​

Answers

Answered by suryawanshilaxman
1

Answer:

5 yrs

Step-by-step explanation:

A=45000

p=30000

s. I=15000

NO. OF YEARS=15000×100/30000×10

=5 YEARS

Answered by SachinGupta01
5

 \bf \:  \underline{Given} :

 \sf \: Principal = Rs. \:  30000

 \sf \: Amount = Rs.  \: 45000

 \sf \: Rate = 10  \: \%

 \bf \:  \underline{To \: find} :

 \sf \: First  \: of  \: all \:  we \:  have \:  to \:  find \:  the  \: simple  \: interest.

 \sf \: After,   that \:  we \:  will \:  find  \: the  \: time \:  period.

 \bf \:  \underline{ \underline{Solution }}:

 \boxed{  \red{\sf \: Simple \:  interest = Amount  - Principal}}

 \implies \:  \sf \: 45000 - 30000

 \implies \:  \sf \: 15000

 \underline{ \sf \: So, \:Simple \:  interest = Rs. \:  15000}

 \sf \: Now,

 \sf \: We \:  will  \: find  \: the \:  time \:  period.

 \sf \: As \:  we \:  know \:  that,

 \boxed{ \red{ \sf \: Simple \: Interest =  \dfrac{P \times R  \times T}{100} }}

 \sf \: Where,

 \longmapsto \:  \sf \: P = Principal

 \longmapsto \:  \sf \: R = Rate  \: of  \: interest

 \longmapsto \:  \sf \: T = Time  \: period

 \sf \: Putting  \: the \:  values,

 \implies \:\sf \: 15000 =  \dfrac{30000 \times 10  \times T}{100}

 \implies \:\sf \: 15000 =  \dfrac{300000  \times T}{100}

 \sf \: Cancel \:  the \:  zero's,

 \implies \:\sf \: 15000 =  3000 \times T

 \implies \:\sf \:  \dfrac{15000}{3000}  =   T

 \implies \:\sf \:  \dfrac{15}{3}  =   T

 \implies \:\sf \:  5  =   T

 \underline {\boxed{  \purple{\sf \: Therefore, \:  the \:  time  \: period \:  is \:  5 \:  year's.}}}

Similar questions