Math, asked by Leader111, 1 month ago

In how many years, a sum of Rs.500 at 5% per annum will amount to Rs.600?

Best answer Needed !!
Spammers are not allowed to answer..​

Answers

Answered by kailashmannem
105

 \Large{\bf{\green{\mathfrak{\dag{\underline{\underline{Given:-}}}}}}}

  • A sum of Rs.500 at 5% per annum will amount to Rs.600

 \Large{\bf{\orange{\mathfrak{\dag{\underline{\underline{To \: Find:-}}}}}}}

  • How many years?

\Large{\bf{\red{\mathfrak{\dag{\underline{\underline{Solution:-}}}}}}}

  • Amount = Rs. 600

  • Principal Amount = Rs. 500

  • Rate of interest = 5%

We know that,

 \boxed{\pink{\sf S.I \: = \: A \: - \: P}}

Substituting the values,

  • S.I = Rs. 600 - Rs. 500

  • S.I = Rs. 100

We know that,

 \boxed{\pink{\sf S.I \: = \: \dfrac{P \: * \: T \: * \: R}{100}}}

Substituting the values,

  •  \sf 100 \: = \: \dfrac{500 \: * \: T \: * \: 5}{100}

  •  \sf 100 \: * \: 100 \: = \: 500 \: * \: T \: * \: 5

  •  \sf 10000 \: = \: 2500 \: * \: T

  •  \sf \dfrac{10000}{2500} \: = \: T

  •  \sf \dfrac{100\cancel{00}}{25\cancel{00}} \: = \: T

  •  \sf \dfrac{100}{25} \: = \: T

  •  \sf \dfrac{\cancel{100}}{\cancel{25}} \: = \: T

  •  \sf T \: = \: 4

Therefore,

  • It takes 4 years for a sum of Rs.500 at 5% per annum to become Rs.600.

 \Large{\bf{\purple{\mathfrak{\dag{\underline{\underline{Formulas \: Used:-}}}}}}}

 \blue{\sf S.I \: = \: A \: - \: P}

  • where,

  • S.I = Simple Interest

  • A = Amount

  • P = Principal Amount

 \blue{\sf S.I \: = \: \dfrac{P \: * \: T \: * \: R}{100}}

  • where,

  • S.I is Simple Interest

  • P is Principal Amount

  • T is Time

  • R is Rate of interest
Answered by SachinGupta01
108

 \bf \:  \underline{Given} :

 \sf \: Rate = 5  \: \% \:  per \:  annum

 \sf \: Principal = Rs. \:  500

 \sf \: Amount = Rs. \:  600

 \bf \:  \underline{To  \: Find}:

 \sf \: We \:  have \:  to  \: find  \: the  \: time.

 \bf \:   \underline{\underline{Solution}}

 \sf \: First \:  of  \: all \:  we  \: have  \: to \:  find \:  the \:  Simple  \: Interest.

 \sf \implies \: S.I = Amount - Principal

\sf\implies \: S.I = 600 - 500

\sf \implies \: S.I = 100

 \bf \: Now ,

 \sf \: We \:  will  \: find \:  the \:  time,

 \sf\longrightarrow \: 100 = \dfrac { P \times R \times T } { 100 }

 \sf \: Where,

 \sf \bull \longmapsto \:  P = Principal

 \sf \:  \bull \longmapsto \: R = Rate

 \sf \bull \longmapsto \:  T = Time

 \sf \:  \underline{Putting \:  the  \: values},

 \sf\implies \: 100 = \dfrac { 500 \times 5 \times T } { 100 }

 \sf \: Simplifying \:  the \:  above  \: expression,

 \sf\implies \: 100 = \dfrac { 2500  \times T } { 100 }

 \sf \: Cutting \:  of  \: Zero's,

 \sf\implies \: 100 = \dfrac { 25\!\!\!\not0\!\!\!\not0  \times T } { 1\!\!\!\not0\!\!\!\not0 }

 \sf\implies \: 100 = \dfrac { 25 \times T } { 1 }

 \sf\implies \:  T =  \dfrac{100}{25}

 \sf\implies \:  T =  4

 \underline{ \boxed{  \sf\pink{Hence, time = 4  \: Years. }}}

Similar questions