Math, asked by spisal835, 2 months ago

*In how many years the amount for Rs. 10000 becomes Rs. 12100 at 10% compound interest?*

1️⃣ 1
2️⃣ 2
3️⃣ 3
4️⃣ 4​

Answers

Answered by Anonymous
7

\huge\fcolorbox{cyan}{black}{Answer}

Compound Interest = P ( 1 + R/100 ) ^n

_______________

Let ,

P - Principal

R - Rate of interest

N - No of years

------------------------

Given that:

  • P - 10000
  • Compound Intrest - 12100
  • Rate - 10%
  • N - ?

_________________

❥Compound  \: Interest = P ( 1 +  \frac{R}{100}  ) ^n

➮ 12100 = 10000( \frac{1 + 10}{100}) ^n

 ➭ 12100 = 10000 (  \frac{1 + 1}{10} )^n

➭ 12100 = 10000 (  \frac{11}{10} )^n

➭  \frac{12100}{10000}  = (  \frac{11}{10} )^n

➭  \frac{11}{10} ^2 = (  \frac{11}{10} )^n

-----------------------

So value of N is 2.

It will take 2 years.

Answered by Anonymous
5

Step-by-step explanation:

CompoundInterest=P(1+

100

R

)

n

➮ 12100 = 10000( \frac{1 + 10}{100}) ^n➮12100=10000(

100

1+10

)

n

➭ 12100 = 10000 ( \frac{1 + 1}{10} )^n➭12100=10000(

10

1+1

)

n

➭ 12100 = 10000 ( \frac{11}{10} )^n➭12100=10000(

10

11

)

n

➭ \frac{12100}{10000} = ( \frac{11}{10} )^n➭

10000

12100

=(

10

11

)

n

➭ \frac{11}{10} ^2 = ( \frac{11}{10} )^n➭

10

11

2

=(

10

11

)

n

-----------------------

Similar questions