Math, asked by seraj0, 4 months ago

in how many years will Rs 8000 amount to Rs 13824 at 20% per annum interest compounded annually?​

Answers

Answered by Anonymous
60

Answer:

Given :-

  • A sum of Rs 8000 amount to Rs 13824 at 20% per annum.

To Find :-

  • What is the time.

Formula Used :-

{\purple{\boxed{\large{\bold{P\bigg(1 + \dfrac{r}{100}\bigg)^{n} =\: A}}}}}

where,

  • P = Principal
  • r = Rate of Interest
  • n = Time
  • A = Amount

Solution :-

Let, the time be n.

Given :

  • Principal = Rs 8000
  • Amount = Rs 13824
  • Rate of Interest = 20%

According to the question by using the formula we get,

\sf 8000\bigg(1 + \dfrac{20}{100}\bigg)^{n} =\: 13824

\sf 8000\bigg(\dfrac{100 + 20}{100}\bigg)^{n} =\: 13824

\sf 8000\bigg(\dfrac{120}{100}\bigg)^{n} =\: 13824

\sf \bigg(\dfrac{\cancel{120}}{\cancel{100}}\bigg)^{n} =\: \dfrac{13824}{8000}

\sf \bigg(\cancel{\dfrac{24}{20}}\bigg)^{n} =\: \bigg(\cancel{\dfrac{24}{20}}\bigg)^{3}

\sf\bold{\green{n =\: 3\: years}}

\therefore The time is 3 years .

Answered by BrainlyTopper97
103

{\huge{\boxed{\underline{\mathrm{\orange{A}{\blue{n}{\red{s}{\green{w}{\pink{e}{\purple{r:-}}}}}}}}}}}

In 3 years, ₹8,000 will amount to ₹13,824 at 20% p.a. when compounded annually.

Step-by-step explanation:

{\large{\boxed{\underline{\mathrm{\orange{Given:-}}}}}}

  • Principal = ₹8,000
  • Rate of interest = 20%
  • Amount = ₹13,824

{\large{\boxed{\underline{\mathrm{\pink{To \ Find:-}}}}}}

  • Time

{\large{\boxed{\underline{\mathrm{\purple{Formula \ Used:-}}}}}}

{\bigstar} \ {\red{\boxed{\mathsf{A = P \bigg{(} 1+\dfrac{r}{100} \bigg{)}^n}}}}} \ {\bigstar}

Where,

  • P = Principal i.e. ₹8,000
  • r = Rate of Interest i.e. 20%
  • A = Amount

{\large{\boxed{\underline{\mathrm{\blue{Solution:-}}}}}}

After inserting the formulas in the formula of amount, we get,

\Longrightarrow {\mathsf{8000 \ {\bigg{(}} 1 + \dfrac{20}{100} {\bigg{)}}^n = 13824}}}

\Longrightarrow {\mathsf{8000 \ {\bigg{(}} \dfrac{100 + 20}{100} {\bigg{)}}^n = 13,824}}}

\Longrightarrow {\mathsf{8000 \ {\bigg{(}} \dfrac{120}{100} {\bigg{)}}^n = 13,824}}}  

\Longrightarrow {\mathsf{{\bigg{(}} \dfrac{120}{100} {\bigg{)}}^n = \dfrac{13,824}{8,000}}}}

\Longrightarrow {\mathsf{ {\bigg{(}}  \dfrac{24}{20} {\bigg{)}}^n = \dfrac{13,824}{8,000}}}}

\Longrightarrow {\mathsf{{\bigg{(}}  \dfrac{24}{20} {\bigg{)}}^3 = \dfrac{13,824}{8,000}}}}

➠ n = 3 years

Hence,  {\large{\boxed{\boxed{\underline{\mathsf{\orange{Time}{\blue{ \ is \ }{\green{3 \ years.}}}}}}}}}

Similar questions