in how much time will ₹2000 give C.I. of ₹163.20, if the rate of interest is 4% per annum?
Answers
We have,
Rate = 4 % per annum
CI = ₹163.20
Principal (P) = Rs 2000
By using the formula,
CI = P [(1 + R/100)n – 1]
Substituting the values, we have
163.20 = 2000[(1 + 4/100)n – 1]
163.20 = 2000[(1.04)n -1]
163.20 = 2000 × (1.04)n – 2000
163.20 + 2000 = 2000 × (1.04)n
2163.2 = 2000 × (1.04)n
(1.04)n = 2163.2/2000
(1.04)n = 1.0816
(1.04)n = (1.04)2
So on comparing both the sides, n = 2
Therefore,
Time required is 2 years.
Hopes this helps you ✌☺
Answer:
We have,
We have,Rate = 4 % per annum
We have,Rate = 4 % per annumCI = ₹163.20
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have163.20 = 2000[(1 + 4/100)n – 1]
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have163.20 = 2000[(1 + 4/100)n – 1]163.20 = 2000[(1.04)n -1]
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have163.20 = 2000[(1 + 4/100)n – 1]163.20 = 2000[(1.04)n -1]163.20 = 2000 × (1.04)n – 2000
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have163.20 = 2000[(1 + 4/100)n – 1]163.20 = 2000[(1.04)n -1]163.20 = 2000 × (1.04)n – 2000163.20 + 2000 = 2000 × (1.04)n
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have163.20 = 2000[(1 + 4/100)n – 1]163.20 = 2000[(1.04)n -1]163.20 = 2000 × (1.04)n – 2000163.20 + 2000 = 2000 × (1.04)n2163.2 = 2000 × (1.04)n
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have163.20 = 2000[(1 + 4/100)n – 1]163.20 = 2000[(1.04)n -1]163.20 = 2000 × (1.04)n – 2000163.20 + 2000 = 2000 × (1.04)n2163.2 = 2000 × (1.04)n(1.04)n = 2163.2/2000
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have163.20 = 2000[(1 + 4/100)n – 1]163.20 = 2000[(1.04)n -1]163.20 = 2000 × (1.04)n – 2000163.20 + 2000 = 2000 × (1.04)n2163.2 = 2000 × (1.04)n(1.04)n = 2163.2/2000(1.04)n = 1.0816
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have163.20 = 2000[(1 + 4/100)n – 1]163.20 = 2000[(1.04)n -1]163.20 = 2000 × (1.04)n – 2000163.20 + 2000 = 2000 × (1.04)n2163.2 = 2000 × (1.04)n(1.04)n = 2163.2/2000(1.04)n = 1.0816(1.04)n = (1.04)2
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have163.20 = 2000[(1 + 4/100)n – 1]163.20 = 2000[(1.04)n -1]163.20 = 2000 × (1.04)n – 2000163.20 + 2000 = 2000 × (1.04)n2163.2 = 2000 × (1.04)n(1.04)n = 2163.2/2000(1.04)n = 1.0816(1.04)n = (1.04)2So on comparing both the sides, n = 2
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have163.20 = 2000[(1 + 4/100)n – 1]163.20 = 2000[(1.04)n -1]163.20 = 2000 × (1.04)n – 2000163.20 + 2000 = 2000 × (1.04)n2163.2 = 2000 × (1.04)n(1.04)n = 2163.2/2000(1.04)n = 1.0816(1.04)n = (1.04)2So on comparing both the sides, n = 2Therefore,
We have,Rate = 4 % per annumCI = ₹163.20Principal (P) = Rs 2000By using the formula,CI = P [(1 + R/100)n – 1]Substituting the values, we have163.20 = 2000[(1 + 4/100)n – 1]163.20 = 2000[(1.04)n -1]163.20 = 2000 × (1.04)n – 2000163.20 + 2000 = 2000 × (1.04)n2163.2 = 2000 × (1.04)n(1.04)n = 2163.2/2000(1.04)n = 1.0816(1.04)n = (1.04)2So on comparing both the sides, n = 2Therefore,Time required is 2 years.