Math, asked by prashastitalesara73, 11 months ago

In how much time will a sum of money double itself at 12% per annum simple interest.​

Answers

Answered by TRISHNADEVI
18

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:   \: SOLUTION \:  \: } \mid}}}}}

 \underline{ \bold{ \:  \: Given  \: :\mapsto }} \\  \\  \text{Rate  \: of  \: interest, r = 12\% } \\  \\  \text{Suppose,} \\  \\   \:  \:  \:  \:  \:  \:  \:  \: \text{Principal = P} \\  \\  \bold{ \therefore \: Amount,A = 2P} \\ \\ \:  \:  \:  \:  \:  \:  \:  \:    \text{Time = n} \\  \\  \\  \text{Interest \:  is  \: calculated  \: in  \: Simple \:  Interest.} \\  \\  \bold{ \therefore \: S.I. = Amount - Principal} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{= 2P - P} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bold{= P} \\  \\  \\ </p><p>

 \underline{ \text{ \: We know that, \: }} \\  \\  \bold{S.I. =  \frac{P \times r \times n}{100} } \\  \\  \bold{ \Rightarrow \: P =  \frac{P \times 12 \times n}{100} } \\  \\  \bold{\Rightarrow \: 100 \times \: P =  P \times 12 \times n} \\  \\  \bold{\Rightarrow \:  \frac{100 \times  \cancel{P}}{ \cancel{P}} = 12 \times n } \\  \\  \bold{\Rightarrow \:    \frac{100}{12} = n } \\  \\  \bold {\therefore \: n = 8.33} \\  \\  \\  \mathsf{ \therefore \:Required \:  \:  number \:  \:  of  \:  \: years = 8.33 \:  years}

Answered by Aripthajoysce120735
3

Answer:

We know that SI = PRT/100

We know that SI = A - P.

A - P = PRT/100

2400 - 1200 = 1200 * 8 * T/100

1200 = 96T

T = 1200/96

  = 12.5 years.

Step-by-step explanation:

hope it helps

pls mark mine as the brainliest

Similar questions