Physics, asked by anyangolatifa, 2 months ago

In hydraulic pressure a force of 200n is applied to a master piston of area 25cm². If the pressure is designed to produce 5000n. Determine the radius of the slave piston

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
109

Given

  • Input force = 200 N
  • Output force = 5000 N
  • Area of the master piston = 25 cm²

To Find

  • Radius of the slave piston

Solution

☯ F₁/F₂ = A₁/A₂

  • The above formula is also called as the Pascal's law

━━━━━━━━━━━━━━━━━━━━━━━━━

According to the Question :

➞ F₁/F₂ = A₁/A₂

➞ 200/5000 = 25/x

➞ A₂ = (25 × 5000)/200

A₂ = 625 cm²

━━━━━━━━━━━━━━━━━━━━━━━━━

So then the Radius of the slave piston would be,

  • πr² = 625
  • r² = 625/3.14
  • r = √199
  • r = 14.1 cm

∴ The radius of the slave piston is 14.1 cm

Answered by BrainlyMilitary
85

Given : Applied Force ( \bf F_1 ) is 200 N , Produced Force is (\bf F_2 ) & Area of Master Piston is (\bf A_1 ) 25 cm² .

To Find : Radius of slave Piston .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀Firstly , we need To Find Area of Slave Piston .

❒ Let's Consider Area of Slave Piston be x .

⠀⠀⠀⠀⠀⠀⠀By PASCAL'S LAW :

\qquad  \dag \qquad \boxed {\: \pink {\sf \qquad \dfrac{ F_1 }{F_2 } \:\: = \:\:\dfrac{ A_1}{A_2} \qquad }} \\

⠀⠀⠀⠀⠀⠀⠀Here , \sf F_1 is the Applied Force, \sf F_2 is the Produced Force \sf A_1 is the Area of Master Piston & \sf A_2 is the Area of Slave Piston .

\qquad \dashrightarrow \:\sf \dfrac{ F_1 }{F_2 } = \dfrac{ A_1}{A_2} \\

\qquad \dashrightarrow \:\sf \dfrac{ 200 }{5000 } = \dfrac{ 25 }{x} \\

\qquad \dashrightarrow \:\sf 200x  =  25 ( 5000 ) \\

\qquad \dashrightarrow \:\sf 200x  =  125000  \\

\qquad \dashrightarrow \:\sf x  = \dfrac{ 125000 }{200} \\

\qquad \dashrightarrow \:\sf x  = 625 \\

\qquad \dashrightarrow \pmb{\underline{\purple{\:x = 625\:cm^2  }} }\:\;\bigstar \\

⠀⠀⠀⠀⠀Here , x signifies Area of Slave Piston which is 625 cm²

⠀⠀⠀⠀⠀Now , Radius of Slave Piston :

\qquad \dashrightarrow \:\sf Area_{(Slave \:Piston \:)}=  \pi \:r^2  \\

\qquad \dashrightarrow \:\sf 625 =  \pi \:r^2  \\

\qquad \dashrightarrow \:\sf 625 =  3.14 \times  \:r^2  \\

\qquad \dashrightarrow \:\sf \dfrac{625}{3.14} =    \:r^2  \\

\qquad \dashrightarrow \:\sf 199  =    \:r^2  \\

\qquad \dashrightarrow \:\sf \sqrt {199 } =    \:r  \\

\qquad \dashrightarrow \:\sf 14.1  =    \:r \\

\qquad \dashrightarrow \pmb{\underline{\purple{\:r = 14.1\:cm  }} }\:\;\bigstar \\

⠀⠀⠀⠀⠀\therefore {\underline{ \sf \:Hence,\:Radius \:of\:Slave \:Piston \:is\:\bf 14.1 \: cm\:  }}\\

Similar questions