Math, asked by mumalkanwar1986, 5 months ago

in in figure ABC is an isosceles triangle in which altitude be and CF are drawn to equal sides AC and AB respectively. show that these altitude are given​

Attachments:

Answers

Answered by suraj5070
78

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt In\: the\: given\: figure\: ABC\: is \:an\: isosceles \:triangle\\\tt in\: which\: altitudes\: BE\: and\: CF\: are\: drawn\: to\: equal\\\tt sides\: AC\: and\: AB\: respectively\:. Show \:that \:these\\\tt altitude\: are\: equal.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf \triangle ABC\: is\: an\: isosceles\: triangle
  •  \sf \bf AB=AC
  •  \sf \bf BE\:and\:CF\:are\:altitudes
  • \sf \bf \angle AEB={90}^{\circ}
  • \sf \bf \angle AFC={90}^{\circ}

 \sf \bf {\boxed {\mathbb {TO\:PROVE}}}

  •  \sf \bf BE=CF

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 \sf \bf In\: \triangle ABE\:and\: \triangle ACF

 \sf \bf\implies \angle AEB=\angle AFC-(Given)

 \sf \bf\implies \angle A=\angle A-(Common\:angle)

 \sf \bf \implies AB=AC-(Given)

\sf \bf \therefore \triangle ABE\: \cong \: \triangle ACF-(AAS)

 \sf \bf\implies BE=CF-(CPCT)

 \tt {\underbrace {Hence\:Proved}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

_________________________________________

 \sf \bf\huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \tt {\overbrace{\underbrace {Congruent\:Triangle\:Postulates}}}

 \sf \bf SSS=Side\:Side\:Side \:Postulate

 \sf \bf SAS=Side\:Angle\:Side \:Postulate

 \sf \bf ASA=Angle\:Side\:Angle\:Postulate

 \sf \bf AAS=Angle\:Angle\:Side \:Postulate

 \sf \bf RHS=Right\:angle\:Hypotenuse\:Side

 {\mathbb{\colorbox {orange} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@suraj5070}}}}}}}}}}}}}}}

Attachments:
Similar questions